Abstract:Artificial intelligence (AI) is considered an efficient response to several challenges facing 6G technology. However, AI still suffers from a huge trust issue due to its ambiguous way of making predictions. Therefore, there is a need for a method to evaluate the AI's trustworthiness in practice for future 6G applications. This paper presents a practical model to analyze the trustworthiness of AI in a dedicated 6G application. In particular, we present two customized Deep Neural Networks (DNNs) to solve the Automatic Modulation Recognition (AMR) problem in Terahertz communications-based 6G technology. Then, a specific trustworthiness model and its attributes, namely data robustness, parameter sensitivity, and security covering adversarial examples, are introduced. The evaluation results indicate that the proposed trustworthiness attributes are crucial to evaluate the trustworthiness of DNN for this 6G application.
Abstract:In this paper, we present a data-driven strategy to simplify the deployment of model-based controllers in legged robotic hardware platforms. Our approach leverages a model-free safe learning algorithm to automate the tuning of control gains, addressing the mismatch between the simplified model used in the control formulation and the real system. This method substantially mitigates the risk of hazardous interactions with the robot by sample-efficiently optimizing parameters within a probably safe region. Additionally, we extend the applicability of our approach to incorporate the different gait parameters as contexts, leading to a safe, sample-efficient exploration algorithm capable of tuning a motion controller for diverse gait patterns. We validate our method through simulation and hardware experiments, where we demonstrate that the algorithm obtains superior performance on tuning a model-based motion controller for multiple gaits safely.