Abstract:Global climate models (GCMs) are the main tools for understanding and predicting climate change. However, due to limited numerical resolutions, these models suffer from major structural uncertainties; e.g., they cannot resolve critical processes such as small-scale eddies in atmospheric and oceanic turbulence. Thus, such small-scale processes have to be represented as a function of the resolved scales via closures (parametrization). The accuracy of these closures is particularly important for capturing climate extremes. Traditionally, such closures are based on heuristics and simplifying assumptions about the unresolved physics. Recently, supervised-learned closures, trained offline on high-fidelity data, have been shown to outperform the classical physics-based closures. However, this approach requires a significant amount of high-fidelity training data and can also lead to instabilities. Reinforcement learning is emerging as a potent alternative for developing such closures as it requires only low-order statistics and leads to stable closures. In Scientific Multi-Agent Reinforcement Learning (SMARL) computational elements serve a dual role of discretization points and learning agents. We leverage SMARL and fundamentals of turbulence physics to learn closures for prototypes of atmospheric and oceanic turbulence. The policy is trained using only the enstrophy spectrum, which is nearly invariant and can be estimated from a few high-fidelity samples (these few samples are far from enough for supervised/offline learning). We show that these closures lead to stable low-resolution simulations that, at a fraction of the cost, can reproduce the high-fidelity simulations' statistics, including the tails of the probability density functions. The results demonstrate the high potential of SMARL for closure modeling for GCMs, especially in the regime of scarce data and indirect observations.
Abstract:The discovery of individual objectives in collective behavior of complex dynamical systems such as fish schools and bacteria colonies is a long-standing challenge. Inverse reinforcement learning is a potent approach for addressing this challenge but its applicability to dynamical systems, involving continuous state-action spaces and multiple interacting agents, has been limited. In this study, we tackle this challenge by introducing an off-policy inverse multi-agent reinforcement learning algorithm (IMARL). Our approach combines the ReF-ER techniques with guided cost learning. By leveraging demonstrations, our algorithm automatically uncovers the reward function and learns an effective policy for the agents. Through extensive experimentation, we demonstrate that the proposed policy captures the behavior observed in the provided data, and achieves promising results across problem domains including single agent models in the OpenAI gym and multi-agent models of schooling behavior. The present study shows that the proposed IMARL algorithm is a significant step towards understanding collective dynamics from the perspective of its constituents, and showcases its value as a tool for studying complex physical systems exhibiting collective behaviour.