Abstract:Privacy in Federated Learning (FL) is studied at two different granularities: item-level, which protects individual data points, and user-level, which protects each user (participant) in the federation. Nearly all of the private FL literature is dedicated to studying privacy attacks and defenses at these two granularities. Recently, subject-level privacy has emerged as an alternative privacy granularity to protect the privacy of individuals (data subjects) whose data is spread across multiple (organizational) users in cross-silo FL settings. An adversary might be interested in recovering private information about these individuals (a.k.a. \emph{data subjects}) by attacking the trained model. A systematic study of these patterns requires complete control over the federation, which is impossible with real-world datasets. We design a simulator for generating various synthetic federation configurations, enabling us to study how properties of the data, model design and training, and the federation itself impact subject privacy risk. We propose three attacks for \emph{subject membership inference} and examine the interplay between all factors within a federation that affect the attacks' efficacy. We also investigate the effectiveness of Differential Privacy in mitigating this threat. Our takeaways generalize to real-world datasets like FEMNIST, giving credence to our findings.