Abstract:We study the task of testable learning of general -- not necessarily homogeneous -- halfspaces with adversarial label noise with respect to the Gaussian distribution. In the testable learning framework, the goal is to develop a tester-learner such that if the data passes the tester, then one can trust the output of the robust learner on the data.Our main result is the first polynomial time tester-learner for general halfspaces that achieves dimension-independent misclassification error. At the heart of our approach is a new methodology to reduce testable learning of general halfspaces to testable learning of nearly homogeneous halfspaces that may be of broader interest.
Abstract:We study the efficient learnability of low-degree polynomial threshold functions (PTFs) in the presence of a constant fraction of adversarial corruptions. Our main algorithmic result is a polynomial-time PAC learning algorithm for this concept class in the strong contamination model under the Gaussian distribution with error guarantee $O_{d, c}(\text{opt}^{1-c})$, for any desired constant $c>0$, where $\text{opt}$ is the fraction of corruptions. In the strong contamination model, an omniscient adversary can arbitrarily corrupt an $\text{opt}$-fraction of the data points and their labels. This model generalizes the malicious noise model and the adversarial label noise model. Prior to our work, known polynomial-time algorithms in this corruption model (or even in the weaker adversarial label noise model) achieved error $\tilde{O}_d(\text{opt}^{1/(d+1)})$, which deteriorates significantly as a function of the degree $d$. Our algorithm employs an iterative approach inspired by localization techniques previously used in the context of learning linear threshold functions. Specifically, we use a robust perceptron algorithm to compute a good partial classifier and then iterate on the unclassified points. In order to achieve this, we need to take a set defined by a number of polynomial inequalities and partition it into several well-behaved subsets. To this end, we develop new polynomial decomposition techniques that may be of independent interest.
Abstract:We study Gaussian sparse estimation tasks in Huber's contamination model with a focus on mean estimation, PCA, and linear regression. For each of these tasks, we give the first sample and computationally efficient robust estimators with optimal error guarantees, within constant factors. All prior efficient algorithms for these tasks incur quantitatively suboptimal error. Concretely, for Gaussian robust $k$-sparse mean estimation on $\mathbb{R}^d$ with corruption rate $\epsilon>0$, our algorithm has sample complexity $(k^2/\epsilon^2)\mathrm{polylog}(d/\epsilon)$, runs in sample polynomial time, and approximates the target mean within $\ell_2$-error $O(\epsilon)$. Previous efficient algorithms inherently incur error $\Omega(\epsilon \sqrt{\log(1/\epsilon)})$. At the technical level, we develop a novel multidimensional filtering method in the sparse regime that may find other applications.
Abstract:We study the problem of estimating the mean of an identity covariance Gaussian in the truncated setting, in the regime when the truncation set comes from a low-complexity family $\mathcal{C}$ of sets. Specifically, for a fixed but unknown truncation set $S \subseteq \mathbb{R}^d$, we are given access to samples from the distribution $\mathcal{N}(\boldsymbol{ \mu}, \mathbf{ I})$ truncated to the set $S$. The goal is to estimate $\boldsymbol\mu$ within accuracy $\epsilon>0$ in $\ell_2$-norm. Our main result is a Statistical Query (SQ) lower bound suggesting a super-polynomial information-computation gap for this task. In more detail, we show that the complexity of any SQ algorithm for this problem is $d^{\mathrm{poly}(1/\epsilon)}$, even when the class $\mathcal{C}$ is simple so that $\mathrm{poly}(d/\epsilon)$ samples information-theoretically suffice. Concretely, our SQ lower bound applies when $\mathcal{C}$ is a union of a bounded number of rectangles whose VC dimension and Gaussian surface are small. As a corollary of our construction, it also follows that the complexity of the previously known algorithm for this task is qualitatively best possible.
Abstract:We study the power of query access for the task of agnostic learning under the Gaussian distribution. In the agnostic model, no assumptions are made on the labels and the goal is to compute a hypothesis that is competitive with the {\em best-fit} function in a known class, i.e., it achieves error $\mathrm{opt}+\epsilon$, where $\mathrm{opt}$ is the error of the best function in the class. We focus on a general family of Multi-Index Models (MIMs), which are $d$-variate functions that depend only on few relevant directions, i.e., have the form $g(\mathbf{W} \mathbf{x})$ for an unknown link function $g$ and a $k \times d$ matrix $\mathbf{W}$. Multi-index models cover a wide range of commonly studied function classes, including constant-depth neural networks with ReLU activations, and intersections of halfspaces. Our main result shows that query access gives significant runtime improvements over random examples for agnostically learning MIMs. Under standard regularity assumptions for the link function (namely, bounded variation or surface area), we give an agnostic query learner for MIMs with complexity $O(k)^{\mathrm{poly}(1/\epsilon)} \; \mathrm{poly}(d) $. In contrast, algorithms that rely only on random examples inherently require $d^{\mathrm{poly}(1/\epsilon)}$ samples and runtime, even for the basic problem of agnostically learning a single ReLU or a halfspace. Our algorithmic result establishes a strong computational separation between the agnostic PAC and the agnostic PAC+Query models under the Gaussian distribution. Prior to our work, no such separation was known -- even for the special case of agnostically learning a single halfspace, for which it was an open problem first posed by Feldman. Our results are enabled by a general dimension-reduction technique that leverages query access to estimate gradients of (a smoothed version of) the underlying label function.
Abstract:We study the clustering problem for mixtures of bounded covariance distributions, under a fine-grained separation assumption. Specifically, given samples from a $k$-component mixture distribution $D = \sum_{i =1}^k w_i P_i$, where each $w_i \ge \alpha$ for some known parameter $\alpha$, and each $P_i$ has unknown covariance $\Sigma_i \preceq \sigma^2_i \cdot I_d$ for some unknown $\sigma_i$, the goal is to cluster the samples assuming a pairwise mean separation in the order of $(\sigma_i+\sigma_j)/\sqrt{\alpha}$ between every pair of components $P_i$ and $P_j$. Our contributions are as follows: For the special case of nearly uniform mixtures, we give the first poly-time algorithm for this clustering task. Prior work either required separation scaling with the maximum cluster standard deviation (i.e. $\max_i \sigma_i$) [DKK+22b] or required both additional structural assumptions and mean separation scaling as a large degree polynomial in $1/\alpha$ [BKK22]. For general-weight mixtures, we point out that accurate clustering is information-theoretically impossible under our fine-grained mean separation assumptions. We introduce the notion of a clustering refinement -- a list of not-too-small subsets satisfying a similar separation, and which can be merged into a clustering approximating the ground truth -- and show that it is possible to efficiently compute an accurate clustering refinement of the samples. Furthermore, under a variant of the "no large sub-cluster'' condition from in prior work [BKK22], we show that our algorithm outputs an accurate clustering, not just a refinement, even for general-weight mixtures. As a corollary, we obtain efficient clustering algorithms for mixtures of well-conditioned high-dimensional log-concave distributions. Moreover, our algorithm is robust to $\Omega(\alpha)$-fraction of adversarial outliers.
Abstract:We study the fundamental problems of Gaussian mean estimation and linear regression with Gaussian covariates in the presence of Huber contamination. Our main contribution is the design of the first sample near-optimal and almost linear-time algorithms with optimal error guarantees for both of these problems. Specifically, for Gaussian robust mean estimation on $\mathbb{R}^d$ with contamination parameter $\epsilon \in (0, \epsilon_0)$ for a small absolute constant $\epsilon_0$, we give an algorithm with sample complexity $n = \tilde{O}(d/\epsilon^2)$ and almost linear runtime that approximates the target mean within $\ell_2$-error $O(\epsilon)$. This improves on prior work that achieved this error guarantee with polynomially suboptimal sample and time complexity. For robust linear regression, we give the first algorithm with sample complexity $n = \tilde{O}(d/\epsilon^2)$ and almost linear runtime that approximates the target regressor within $\ell_2$-error $O(\epsilon)$. This is the first polynomial sample and time algorithm achieving the optimal error guarantee, answering an open question in the literature. At the technical level, we develop a methodology that yields almost-linear time algorithms for multi-directional filtering that may be of broader interest.
Abstract:We investigate the statistical task of closeness (or equivalence) testing for multidimensional distributions. Specifically, given sample access to two unknown distributions $\mathbf p, \mathbf q$ on $\mathbb R^d$, we want to distinguish between the case that $\mathbf p=\mathbf q$ versus $\|\mathbf p-\mathbf q\|_{A_k} > \epsilon$, where $\|\mathbf p-\mathbf q\|_{A_k}$ denotes the generalized ${A}_k$ distance between $\mathbf p$ and $\mathbf q$ -- measuring the maximum discrepancy between the distributions over any collection of $k$ disjoint, axis-aligned rectangles. Our main result is the first closeness tester for this problem with {\em sub-learning} sample complexity in any fixed dimension and a nearly-matching sample complexity lower bound. In more detail, we provide a computationally efficient closeness tester with sample complexity $O\left((k^{6/7}/ \mathrm{poly}_d(\epsilon)) \log^d(k)\right)$. On the lower bound side, we establish a qualitatively matching sample complexity lower bound of $\Omega(k^{6/7}/\mathrm{poly}(\epsilon))$, even for $d=2$. These sample complexity bounds are surprising because the sample complexity of the problem in the univariate setting is $\Theta(k^{4/5}/\mathrm{poly}(\epsilon))$. This has the interesting consequence that the jump from one to two dimensions leads to a substantial increase in sample complexity, while increases beyond that do not. As a corollary of our general $A_k$ tester, we obtain $d_{\mathrm TV}$-closeness testers for pairs of $k$-histograms on $\mathbb R^d$ over a common unknown partition, and pairs of uniform distributions supported on the union of $k$ unknown disjoint axis-aligned rectangles. Both our algorithm and our lower bound make essential use of tools from Ramsey theory.
Abstract:We study the problem of high-dimensional robust mean estimation in an online setting. Specifically, we consider a scenario where $n$ sensors are measuring some common, ongoing phenomenon. At each time step $t=1,2,\ldots,T$, the $i^{th}$ sensor reports its readings $x^{(i)}_t$ for that time step. The algorithm must then commit to its estimate $\mu_t$ for the true mean value of the process at time $t$. We assume that most of the sensors observe independent samples from some common distribution $X$, but an $\epsilon$-fraction of them may instead behave maliciously. The algorithm wishes to compute a good approximation $\mu$ to the true mean $\mu^\ast := \mathbf{E}[X]$. We note that if the algorithm is allowed to wait until time $T$ to report its estimate, this reduces to the well-studied problem of robust mean estimation. However, the requirement that our algorithm produces partial estimates as the data is coming in substantially complicates the situation. We prove two main results about online robust mean estimation in this model. First, if the uncorrupted samples satisfy the standard condition of $(\epsilon,\delta)$-stability, we give an efficient online algorithm that outputs estimates $\mu_t$, $t \in [T],$ such that with high probability it holds that $\|\mu-\mu^\ast\|_2 = O(\delta \log(T))$, where $\mu = (\mu_t)_{t \in [T]}$. We note that this error bound is nearly competitive with the best offline algorithms, which would achieve $\ell_2$-error of $O(\delta)$. Our second main result shows that with additional assumptions on the input (most notably that $X$ is a product distribution) there are inefficient algorithms whose error does not depend on $T$ at all.
Abstract:We study the problem of learning mixtures of linear classifiers under Gaussian covariates. Given sample access to a mixture of $r$ distributions on $\mathbb{R}^n$ of the form $(\mathbf{x},y_{\ell})$, $\ell\in [r]$, where $\mathbf{x}\sim\mathcal{N}(0,\mathbf{I}_n)$ and $y_\ell=\mathrm{sign}(\langle\mathbf{v}_\ell,\mathbf{x}\rangle)$ for an unknown unit vector $\mathbf{v}_\ell$, the goal is to learn the underlying distribution in total variation distance. Our main result is a Statistical Query (SQ) lower bound suggesting that known algorithms for this problem are essentially best possible, even for the special case of uniform mixtures. In particular, we show that the complexity of any SQ algorithm for the problem is $n^{\mathrm{poly}(1/\Delta) \log(r)}$, where $\Delta$ is a lower bound on the pairwise $\ell_2$-separation between the $\mathbf{v}_\ell$'s. The key technical ingredient underlying our result is a new construction of spherical designs that may be of independent interest.