Abstract:Eye-tracking datasets are often shared in the format used by their creators for their original analyses, usually resulting in the exclusion of data considered irrelevant to the primary purpose. In order to increase re-usability of existing eye-tracking datasets for more diverse and initially not considered use cases, this work advocates a new approach of sharing eye-tracking data. Instead of publishing filtered and pre-processed datasets, the eye-tracking data at all pre-processing stages should be published together with data quality reports. In order to transparently report data quality and enable cross-dataset comparisons, we develop data quality reporting standards and metrics that can be automatically applied to a dataset, and integrate them into the open-source Python package pymovements (https://github.com/aeye-lab/pymovements).
Abstract:Recent work in XAI for eye tracking data has evaluated the suitability of feature attribution methods to explain the output of deep neural sequence models for the task of oculomotric biometric identification. These methods provide saliency maps to highlight important input features of a specific eye gaze sequence. However, to date, its localization analysis has been lacking a quantitative approach across entire datasets. In this work, we employ established gaze event detection algorithms for fixations and saccades and quantitatively evaluate the impact of these events by determining their concept influence. Input features that belong to saccades are shown to be substantially more important than features that belong to fixations. By dissecting saccade events into sub-events, we are able to show that gaze samples that are close to the saccadic peak velocity are most influential. We further investigate the effect of event properties like saccadic amplitude or fixational dispersion on the resulting concept influence.