Abstract:Knowledge Tracing (KT) is a critical task in online learning for modeling student knowledge over time. Despite the success of deep learning-based KT models, which rely on sequences of numbers as data, most existing approaches fail to leverage the rich semantic information in the text of questions and concepts. This paper proposes Language model-based Knowledge Tracing (LKT), a novel framework that integrates pre-trained language models (PLMs) with KT methods. By leveraging the power of language models to capture semantic representations, LKT effectively incorporates textual information and significantly outperforms previous KT models on large benchmark datasets. Moreover, we demonstrate that LKT can effectively address the cold-start problem in KT by leveraging the semantic knowledge captured by PLMs. Interpretability of LKT is enhanced compared to traditional KT models due to its use of text-rich data. We conducted the local interpretable model-agnostic explanation technique and analysis of attention scores to interpret the model performance further. Our work highlights the potential of integrating PLMs with KT and paves the way for future research in KT domain.
Abstract:This paper presents novel techniques for enhancing the performance of knowledge tracing (KT) models by focusing on the crucial factor of question and concept difficulty level. Despite the acknowledged significance of difficulty, previous KT research has yet to exploit its potential for model optimization and has struggled to predict difficulty from unseen data. To address these problems, we propose a difficulty-centered contrastive learning method for KT models and a Large Language Model (LLM)-based framework for difficulty prediction. These innovative methods seek to improve the performance of KT models and provide accurate difficulty estimates for unseen data. Our ablation study demonstrates the efficacy of these techniques by demonstrating enhanced KT model performance. Nonetheless, the complex relationship between language and difficulty merits further investigation.