Abstract:Policies learned via continuous actor-critic methods often exhibit erratic, high-frequency oscillations, making them unsuitable for physical deployment. Current approaches attempt to enforce smoothness by directly regularizing the policy's output. We argue that this approach treats the symptom rather than the cause. In this work, we theoretically establish that policy non-smoothness is fundamentally governed by the differential geometry of the critic. By applying implicit differentiation to the actor-critic objective, we prove that the sensitivity of the optimal policy is bounded by the ratio of the Q-function's mixed-partial derivative (noise sensitivity) to its action-space curvature (signal distinctness). To empirically validate this theoretical insight, we introduce PAVE (Policy-Aware Value-field Equalization), a critic-centric regularization framework that treats the critic as a scalar field and stabilizes its induced action-gradient field. PAVE rectifies the learning signal by minimizing the Q-gradient volatility while preserving local curvature. Experimental results demonstrate that PAVE achieves smoothness and robustness comparable to policy-side smoothness regularization methods, while maintaining competitive task performance, without modifying the actor.
Abstract:While recent advancements in deep neural networks (DNNs) have substantially enhanced visual AI's capabilities, the challenge of inadequate data diversity and volume remains, particularly in construction domain. This study presents a novel image synthesis methodology tailored for construction worker detection, leveraging the generative-AI platform Midjourney. The approach entails generating a collection of 12,000 synthetic images by formulating 3000 different prompts, with an emphasis on image realism and diversity. These images, after manual labeling, serve as a dataset for DNN training. Evaluation on a real construction image dataset yielded promising results, with the model attaining average precisions (APs) of 0.937 and 0.642 at intersection-over-union (IoU) thresholds of 0.5 and 0.5 to 0.95, respectively. Notably, the model demonstrated near-perfect performance on the synthetic dataset, achieving APs of 0.994 and 0.919 at the two mentioned thresholds. These findings reveal both the potential and weakness of generative AI in addressing DNN training data scarcity.
Abstract:The optimization of nanomaterial synthesis using numerous synthetic variables is considered to be extremely laborious task because the conventional combinatorial explorations are prohibitively expensive. In this work, we report an autonomous experimentation platform developed for the bespoke design of nanoparticles (NPs) with targeted optical properties. This platform operates in a closed-loop manner between a batch synthesis module of NPs and a UV- Vis spectroscopy module, based on the feedback of the AI optimization modeling. With silver (Ag) NPs as a representative example, we demonstrate that the Bayesian optimizer implemented with the early stopping criterion can efficiently produce Ag NPs precisely possessing the desired absorption spectra within only 200 iterations (when optimizing among five synthetic reagents). In addition to the outstanding material developmental efficiency, the analysis of synthetic variables further reveals a novel chemistry involving the effects of citrate in Ag NP synthesis. The amount of citrate is a key to controlling the competitions between spherical and plate-shaped NPs and, as a result, affects the shapes of the absorption spectra as well. Our study highlights both capabilities of the platform to enhance search efficiencies and to provide a novel chemical knowledge by analyzing datasets accumulated from the autonomous experimentations.