Abstract:Computational wave imaging (CWI) extracts hidden structure and physical properties of a volume of material by analyzing wave signals that traverse that volume. Applications include seismic exploration of the Earth's subsurface, acoustic imaging and non-destructive testing in material science, and ultrasound computed tomography in medicine. Current approaches for solving CWI problems can be divided into two categories: those rooted in traditional physics, and those based on deep learning. Physics-based methods stand out for their ability to provide high-resolution and quantitatively accurate estimates of acoustic properties within the medium. However, they can be computationally intensive and are susceptible to ill-posedness and nonconvexity typical of CWI problems. Machine learning-based computational methods have recently emerged, offering a different perspective to address these challenges. Diverse scientific communities have independently pursued the integration of deep learning in CWI. This review delves into how contemporary scientific machine-learning (ML) techniques, and deep neural networks in particular, have been harnessed to tackle CWI problems. We present a structured framework that consolidates existing research spanning multiple domains, including computational imaging, wave physics, and data science. This study concludes with important lessons learned from existing ML-based methods and identifies technical hurdles and emerging trends through a systematic analysis of the extensive literature on this topic.
Abstract:We present a new method for calculating the temperature profile in high explosive (HE) material using a Convolutional Neural Network (CNN). To train/test the CNN, we have developed a hybrid experiment/simulation method for collecting acoustic and temperature data. We experimentally heat cylindrical containers of HE material until detonation/deflagration, where we continuously measure the acoustic bursts through the HE using multiple acoustic transducers lined around the exterior container circumference. However, measuring the temperature profile in the HE in experiment would require inserting a high number of thermal probes, which would disrupt the heating process. Thus, we use two thermal probes, one at the HE center and one at the wall. We then use finite element simulation of the heating process to calculate the temperature distribution, and correct the simulated temperatures based on the experimental center and wall temperatures. We calculate temperature errors on the order of 15{\deg}C, which is approximately 12% of the range of temperatures in the experiment. We also investigate how the algorithm accuracy is affected by the number of acoustic receivers used to collect each measurement and the resolution of the temperature prediction. This work provides a means of assessing the safety status of HE material, which cannot be achieved using existing temperature measurement methods. Additionally, it has implications for range of other applications where internal temperature profile measurements would provide critical information. These applications include detecting chemical reactions, observing thermodynamic processes like combustion, monitoring metal or plastic casting, determining the energy density in thermal storage capsules, and identifying abnormal battery operation.