Abstract:Lineage tracing, the joint segmentation and tracking of living cells as they move and divide in a sequence of light microscopy images, is a challenging task. Jug et al. have proposed a mathematical abstraction of this task, the moral lineage tracing problem (MLTP), whose feasible solutions define both a segmentation of every image and a lineage forest of cells. Their branch-and-cut algorithm, however, is prone to many cuts and slow convergence for large instances. To address this problem, we make three contributions: (i) we devise the first efficient primal feasible local search algorithms for the MLTP, (ii) we improve the branch-and-cut algorithm by separating tighter cutting planes and by incorporating our primal algorithms, (iii) we show in experiments that our algorithms find accurate solutions on the problem instances of Jug et al. and scale to larger instances, leveraging moral lineage tracing to practical significance.
Abstract:Lineage tracing, the tracking of living cells as they move and divide, is a central problem in biological image analysis. Solutions, called lineage forests, are key to understanding how the structure of multicellular organisms emerges. We propose an integer linear program (ILP) whose feasible solutions define a decomposition of each image in a sequence into cells (segmentation), and a lineage forest of cells across images (tracing). Unlike previous formulations, we do not constrain the set of decompositions, except by contracting pixels to superpixels. The main challenge, as we show, is to enforce the morality of lineages, i.e., the constraint that cells do not merge. To enforce morality, we introduce path-cut inequalities. To find feasible solutions of the NP-hard ILP, with certified bounds to the global optimum, we define efficient separation procedures and apply these as part of a branch-and-cut algorithm. We show the effectiveness of this approach by analyzing feasible solutions for real microscopy data in terms of bounds and run-time, and by their weighted edit distance to ground truth lineage forests traced by humans.