Abstract:Few-shot Semantic Segmentation(FSS)aim to adapt a pre-trained model to new classes with as few as a single labeled training sample per class. The existing prototypical work used in natural image scenarios biasedly focus on capturing foreground's discrimination while employing a simplistic representation for background, grounded on the inherent observation separation between foreground and background. However, this paradigm is not applicable to medical images where the foreground and background share numerous visual features, necessitating a more detailed description for background. In this paper, we present a new pluggable Background-fused prototype(Bro)approach for FSS in medical images. Instead of finding a commonality of background subjects in support image, Bro incorporates this background with two pivot designs. Specifically, Feature Similarity Calibration(FeaC)initially reduces noise in the support image by employing feature cross-attention with the query image. Subsequently, Hierarchical Channel Adversarial Attention(HiCA)merges the background into comprehensive prototypes. We achieve this by a channel groups-based attention mechanism, where an adversarial Mean-Offset structure encourages a coarse-to-fine fusion. Extensive experiments show that previous state-of-the-art methods, when paired with Bro, experience significant performance improvements. This demonstrates a more integrated way to represent backgrounds specifically for medical image.
Abstract:Domain shift (the difference between source and target domains) poses a significant challenge in clinical applications, e.g., Diabetic Retinopathy (DR) grading. Despite considering certain clinical requirements, like source data privacy, conventional transfer methods are predominantly model-centered and often struggle to prevent model-targeted attacks. In this paper, we address a challenging Online Model-aGnostic Domain Adaptation (OMG-DA) setting, driven by the demands of clinical environments. This setting is characterized by the absence of the model and the flow of target data. To tackle the new challenge, we propose a novel approach, Generative Unadversarial ExampleS (GUES), which enables adaptation from a data-centric perspective. Specifically, we first theoretically reformulate conventional perturbation optimization in a generative way--learning a perturbation generation function with a latent input variable. During model instantiation, we leverage a Variational AutoEncoder to express this function. The encoder with the reparameterization trick predicts the latent input, whilst the decoder is responsible for the generation. Furthermore, the saliency map is selected as pseudo-perturbation labels. Because it not only captures potential lesions but also theoretically provides an upper bound on the function input, enabling the identification of the latent variable. Extensive comparative experiments on DR benchmarks with both frozen pre-trained models and trainable models demonstrate the superiority of GUES, showing robustness even with small batch size.