Abstract:Despite the fact that DeepFake forgery detection algorithms have achieved impressive performance on known manipulations, they often face disastrous performance degradation when generalized to an unseen manipulation. Some recent works show improvement in generalization but rely on features fragile to image distortions such as compression. To this end, we propose Diff-ID, a concise and effective approach that explains and measures the identity loss induced by facial manipulations. When testing on an image of a specific person, Diff-ID utilizes an authentic image of that person as a reference and aligns them to the same identity-insensitive attribute feature space by applying a face-swapping generator. We then visualize the identity loss between the test and the reference image from the image differences of the aligned pairs, and design a custom metric to quantify the identity loss. The metric is then proved to be effective in distinguishing the forgery images from the real ones. Extensive experiments show that our approach achieves high detection performance on DeepFake images and state-of-the-art generalization ability to unknown forgery methods, while also being robust to image distortions.
Abstract:Recently, face swapping has been developing rapidly and achieved a surprising reality, raising concerns about fake content. As a countermeasure, various detection approaches have been proposed and achieved promising performance. However, most existing detectors struggle to maintain performance on unseen face swapping methods and low-quality images. Apart from the generalization problem, current detection approaches have been shown vulnerable to evasion attacks crafted by detection-aware manipulators. Lack of robustness under adversary scenarios leaves threats for applying face swapping detection in real world. In this paper, we propose a novel face swapping detection approach based on face identification probability distributions, coined as IdP_FSD, to improve the generalization and robustness. IdP_FSD is specially designed for detecting swapped faces whose identities belong to a finite set, which is meaningful in real-world applications. Compared with previous general detection methods, we make use of the available real faces with concerned identities and require no fake samples for training. IdP_FSD exploits face swapping's common nature that the identity of swapped face combines that of two faces involved in swapping. We reflect this nature with the confusion of a face identification model and measure the confusion with the maximum value of the output probability distribution. What's more, to defend our detector under adversary scenarios, an attention-based finetuning scheme is proposed for the face identification models used in IdP_FSD. Extensive experiments show that the proposed IdP_FSD not only achieves high detection performance on different benchmark datasets and image qualities but also raises the bar for manipulators to evade the detection.