Abstract:In this paper, we study whether music source separation can be used as a pre-training strategy for music representation learning, targeted at music classification tasks. To this end, we first pre-train U-Net networks under various music source separation objectives, such as the isolation of vocal or instrumental sources from a musical piece; afterwards, we attach a convolutional tail network to the pre-trained U-Net and jointly finetune the whole network. The features learned by the separation network are also propagated to the tail network through skip connections. Experimental results in two widely used and publicly available datasets indicate that pre-training the U-Nets with a music source separation objective can improve performance compared to both training the whole network from scratch and using the tail network as a standalone in two music classification tasks: music auto-tagging, when vocal separation is used, and music genre classification for the case of multi-source separation.
Abstract:Contrastive learning constitutes an emerging branch of self-supervised learning that leverages large amounts of unlabeled data, by learning a latent space, where pairs of different views of the same sample are associated. In this paper, we propose musical source association as a pair generation strategy in the context of contrastive music representation learning. To this end, we modify COLA, a widely used contrastive learning audio framework, to learn to associate a song excerpt with a stochastically selected and automatically extracted vocal or instrumental source. We further introduce a novel modification to the contrastive loss to incorporate information about the existence or absence of specific sources. Our experimental evaluation in three different downstream tasks (music auto-tagging, instrument classification and music genre classification) using the publicly available Magna-Tag-A-Tune (MTAT) as a source dataset yields competitive results to existing literature methods, as well as faster network convergence. The results also show that this pre-training method can be steered towards specific features, according to the selected musical source, while also being dependent on the quality of the separated sources.
Abstract:The study of Music Cognition and neural responses to music has been invaluable in understanding human emotions. Brain signals, though, manifest a highly complex structure that makes processing and retrieving meaningful features challenging, particularly of abstract constructs like affect. Moreover, the performance of learning models is undermined by the limited amount of available neuronal data and their severe inter-subject variability. In this paper we extract efficient, personalized affective representations from EEG signals during music listening. To this end, we employ music signals as a supervisory modality to EEG, aiming to project their semantic correspondence onto a common representation space. We utilize a bi-modal framework by combining an LSTM-based attention model to process EEG and a pre-trained model for music tagging, along with a reverse domain discriminator to align the distributions of the two modalities, further constraining the learning process with emotion tags. The resulting framework can be utilized for emotion recognition both directly, by performing supervised predictions from either modality, and indirectly, by providing relevant music samples to EEG input queries. The experimental findings show the potential of enhancing neuronal data through stimulus information for recognition purposes and yield insights into the distribution and temporal variance of music-induced affective features.
Abstract:The advent of deep learning has led to the prevalence of deep neural network architectures for monaural music source separation, with end-to-end approaches that operate directly on the waveform level increasingly receiving research attention. Among these approaches, transformation of the input mixture to a learned latent space, and multiplicative application of a soft mask to the latent mixture, achieves the best performance, but is prone to the introduction of artifacts to the source estimate. To alleviate this problem, in this paper we propose a hybrid time-domain approach, termed the HTMD-Net, combining a lightweight masking component and a denoising module, based on skip connections, in order to refine the source estimated by the masking procedure. Evaluation of our approach in the task of monaural singing voice separation in the musdb18 dataset indicates that our proposed method achieves competitive performance compared to methods based purely on masking when trained under the same conditions, especially regarding the behavior during silent segments, while achieving higher computational efficiency.
Abstract:Sound Event Detection and Audio Classification tasks are traditionally addressed through time-frequency representations of audio signals such as spectrograms. However, the emergence of deep neural networks as efficient feature extractors has enabled the direct use of audio signals for classification purposes. In this paper, we attempt to recognize musical instruments in polyphonic audio by only feeding their raw waveforms into deep learning models. Various recurrent and convolutional architectures incorporating residual connections are examined and parameterized in order to build end-to-end classi-fiers with low computational cost and only minimal preprocessing. We obtain competitive classification scores and useful instrument-wise insight through the IRMAS test set, utilizing a parallel CNN-BiGRU model with multiple residual connections, while maintaining a significantly reduced number of trainable parameters.
Abstract:Emotion Recognition from EEG signals has long been researched as it can assist numerous medical and rehabilitative applications. However, their complex and noisy structure has proven to be a serious barrier for traditional modeling methods. In this paper we employ multifractal analysis to examine the behavior of EEG signals in terms of presence of fluctuations and the degree of fragmentation along their major frequency bands, for the task of emotion recognition. In order to extract emotion-related features we utilize two novel algorithms for EEG analysis, based on Multiscale Fractal Dimension and Multifractal Detrended Fluctuation Analysis. The proposed feature extraction methods perform efficiently, surpassing some widely used baseline features on the competitive DEAP dataset, indicating that multifractal analysis could serve as basis for the development of robust models for affective state recognition.
Abstract:Instrument classification is one of the fields in Music Information Retrieval (MIR) that has attracted a lot of research interest. However, the majority of that is dealing with monophonic music, while efforts on polyphonic material mainly focus on predominant instrument recognition or multi-instrument recognition for entire tracks. We present an approach for instrument classification in polyphonic music using monophonic training data that involves mixing-augmentation methods. Specifically, we experiment with pitch and tempo-based synchronization, as well as mixes of tracks with similar music genres. Further, a custom CNN model is proposed, that uses the augmented training data efficiently and a plethora of suitable evaluation metrics are discussed as well. The tempo-sync and genre techniques stand out, achieving an 81% label ranking average precision accuracy, detecting up to 9 instruments in over 2300 testing tracks.