Abstract:We present MONET, a new multimodal dataset captured using a thermal camera mounted on a drone that flew over rural areas, and recorded human and vehicle activities. We captured MONET to study the problem of object localisation and behaviour understanding of targets undergoing large-scale variations and being recorded from different and moving viewpoints. Target activities occur in two different land sites, each with unique scene structures and cluttered backgrounds. MONET consists of approximately 53K images featuring 162K manually annotated bounding boxes. Each image is timestamp-aligned with drone metadata that includes information about attitudes, speed, altitude, and GPS coordinates. MONET is different from previous thermal drone datasets because it features multimodal data, including rural scenes captured with thermal cameras containing both person and vehicle targets, along with trajectory information and metadata. We assessed the difficulty of the dataset in terms of transfer learning between the two sites and evaluated nine object detection algorithms to identify the open challenges associated with this type of data. Project page: https://github.com/fabiopoiesi/monet_dataset.
Abstract:Attack vectors are continuously evolving in order to evade Intrusion Detection systems. Internet of Things (IoT) environments, while beneficial for the IT ecosystem, suffer from inherent hardware limitations, which restrict their ability to implement comprehensive security measures and increase their exposure to vulnerability attacks. This paper proposes a novel Network Intrusion Prevention System that utilises a SelfOrganizing Incremental Neural Network along with a Support Vector Machine. Due to its structure, the proposed system provides a security solution that does not rely on signatures or rules and is capable to mitigate known and unknown attacks in real-time with high accuracy. Based on our experimental results with the NSL KDD dataset, the proposed framework can achieve on-line updated incremental learning, making it suitable for efficient and scalable industrial applications.