Abstract:AI tools, particularly large language modules, have recently proven their effectiveness within learning management systems and online education programmes. As feedback continues to play a crucial role in learning and assessment in schools, educators must carefully customise the use of AI tools in order to optimally support students in their learning journey. Efforts to improve educational feedback systems have seen numerous attempts reflected in the research studies but mostly have been focusing on qualitatively benchmarking AI feedback against human-generated feedback. This paper presents an exploration of an alternative feedback framework which extends the capabilities of ChatGPT by integrating embeddings, enabling a more nuanced understanding of educational materials and facilitating topic-targeted feedback for quiz-based assessments. As part of the study, we proposed and developed a proof of concept solution, achieving an efficacy rate of 90% and 100% for open-ended and multiple-choice questions, respectively. The results showed that our framework not only surpasses expectations but also rivals human narratives, highlighting the potential of AI in revolutionising educational feedback mechanisms.
Abstract:Modern streaming services are increasingly labeling videos based on their visual or audio content. This typically augments the use of technologies such as AI and ML by allowing to use natural speech for searching by keywords and video descriptions. Prior research has successfully provided a number of solutions for speech to text, in the case of a human speech, but this article aims to investigate possible solutions to retrieve sound events based on a natural language query, and estimate how effective and accurate they are. In this study, we specifically focus on the YamNet, AlexNet, and ResNet-50 pre-trained models to automatically classify audio samples using their respective melspectrograms into a number of predefined classes. The predefined classes can represent sounds associated with actions within a video fragment. Two tests are conducted to evaluate the performance of the models on two separate problems: audio classification and intervals retrieval based on a natural language query. Results show that the benchmarked models are comparable in terms of performance, with YamNet slightly outperforming the other two models. YamNet was able to classify single fixed-size audio samples with 92.7% accuracy and 68.75% precision while its average accuracy on intervals retrieval was 71.62% and precision was 41.95%. The investigated method may be embedded into an automated event marking architecture for streaming services.
Abstract:Attack vectors are continuously evolving in order to evade Intrusion Detection systems. Internet of Things (IoT) environments, while beneficial for the IT ecosystem, suffer from inherent hardware limitations, which restrict their ability to implement comprehensive security measures and increase their exposure to vulnerability attacks. This paper proposes a novel Network Intrusion Prevention System that utilises a SelfOrganizing Incremental Neural Network along with a Support Vector Machine. Due to its structure, the proposed system provides a security solution that does not rely on signatures or rules and is capable to mitigate known and unknown attacks in real-time with high accuracy. Based on our experimental results with the NSL KDD dataset, the proposed framework can achieve on-line updated incremental learning, making it suitable for efficient and scalable industrial applications.
Abstract:Internet of Things devices have seen a rapid growth and popularity in recent years with many more ordinary devices gaining network capability and becoming part of the ever growing IoT network. With this exponential growth and the limitation of resources, it is becoming increasingly harder to protect against security threats such as malware due to its evolving faster than the defence mechanisms can handle with. The traditional security systems are not able to detect unknown malware as they use signature-based methods. In this paper, we aim to address this issue by introducing a novel IoT malware traffic analysis approach using neural network and binary visualisation. The prime motivation of the proposed approach is to faster detect and classify new malware (zero-day malware). The experiment results show that our method can satisfy the accuracy requirement of practical application.
Abstract:Insider threats are one of the most damaging risk factors for the IT systems and infrastructure of a company or an organization; identification of insider threats has prompted the interest of the world academic research community, with several solutions having been proposed to alleviate their potential impact. For the implementation of the experimental stage described in this study, the Convolutional Neural Network (from now on CNN) algorithm was used and implemented via the Google TensorFlow program, which was trained to identify potential threats from images produced by the available dataset. From the examination of the images that were produced and with the help of Machine Learning, the question of whether the activity of each user is classified as malicious or not for the Information System was answered.
Abstract:Low-rate application layer distributed denial of service (LDDoS) attacks are both powerful and stealthy. They force vulnerable webservers to open all available connections to the adversary, denying resources to real users. Mitigation advice focuses on solutions that potentially degrade quality of service for legitimate connections. Furthermore, without accurate detection mechanisms, distributed attacks can bypass these defences. A methodology for detection of LDDoS attacks, based on characteristics of malicious TCP flows, is proposed within this paper. Research will be conducted using combinations of two datasets: one generated from a simulated network, the other from the publically available CIC DoS dataset. Both contain the attacks slowread, slowheaders and slowbody, alongside legitimate web browsing. TCP flow features are extracted from all connections. Experimentation was carried out using six supervised AI algorithms to categorise attack from legitimate flows. Decision trees and k-NN accurately classified up to 99.99% of flows, with exceptionally low false positive and false negative rates, demonstrating the potential of AI in LDDoS detection.