Abstract:We introduce a FLORES+ dataset as an evaluation benchmark for modern Wu Chinese machine translation models and showcase its compatibility with existing Wu data. Wu Chinese is mutually unintelligible with other Sinitic languages such as Mandarin and Yue (Cantonese), but uses a set of Hanzi (Chinese characters) that profoundly overlaps with others. The population of Wu speakers is the second largest among languages in China, but the language has been suffering from significant drop in usage especially among the younger generations. We identify Wu Chinese as a textually low-resource language and address challenges for its machine translation models. Our contributions include: (1) an open-source, manually translated dataset, (2) full documentations on the process of dataset creation and validation experiments, (3) preliminary tools for Wu Chinese normalization and segmentation, and (4) benefits and limitations of our dataset, as well as implications to other low-resource languages.
Abstract:Rapid damage assessment is of crucial importance to emergency responders during hurricane events, however, the evaluation process is often slow, labor-intensive, costly, and error-prone. New advances in computer vision and remote sensing open possibilities to observe the Earth at a different scale. However, substantial pre-processing work is still required in order to apply state-of-the-art methodology for emergency response. To enable the comparison of methods for automatic detection of damaged buildings from post-hurricane remote sensing imagery taken from both airborne and satellite sensors, this paper presents the development of benchmark datasets from publicly available data. The major contributions of this work include (1) a scalable framework for creating benchmark datasets of hurricane-damaged buildings and (2) public sharing of the resulting benchmark datasets for Greater Houston area after Hurricane Harvey in 2017. The proposed approach can be used to build other hurricane-damaged building datasets on which researchers can train and test object detection models to automatically identify damaged buildings.