Abstract:Police departments around the world use two-way radio for coordination. These broadcast police communications (BPC) are a unique source of information about everyday police activity and emergency response. Yet BPC are not transcribed, and their naturalistic audio properties make automatic transcription challenging. We collect a corpus of roughly 62,000 manually transcribed radio transmissions (~46 hours of audio) to evaluate the feasibility of automatic speech recognition (ASR) using modern recognition models. We evaluate the performance of off-the-shelf speech recognizers, models fine-tuned on BPC data, and customized end-to-end models. We find that both human and machine transcription is challenging in this domain. Large off-the-shelf ASR models perform poorly, but fine-tuned models can reach the approximate range of human performance. Our work suggests directions for future work, including analysis of short utterances and potential miscommunication in police radio interactions. We make our corpus and data annotation pipeline available to other researchers, to enable further research on recognition and analysis of police communication.
Abstract:Radios are essential for the operations of modern police departments, and they function as both a collaborative communication technology and a sociotechnical system. However, little prior research has examined their usage or their connections to individual privacy and the role of race in policing, two growing topics of concern in the US. As a case study, we examine the Chicago Police Department's (CPD's) use of broadcast police communications (BPC) to coordinate the activity of law enforcement officers (LEOs) in the city. From a recently assembled archive of 80,775 hours of BPC associated with CPD operations, we analyze text transcripts of radio transmissions broadcast 9:00 AM to 5:00 PM on August 10th, 2018 in one majority Black, one majority white, and one majority Hispanic area of the city (24 hours of audio) to explore three research questions: (1) Do BPC reflect reported racial disparities in policing? (2) How and when is gender, race/ethnicity, and age mentioned in BPC? (3) To what extent do BPC include sensitive information, and who is put at most risk by this practice? (4) To what extent can large language models (LLMs) heighten this risk? We explore the vocabulary and speech acts used by police in BPC, comparing mentions of personal characteristics to local demographics, the personal information shared over BPC, and the privacy concerns that it poses. Analysis indicates (a) policing professionals in the city of Chicago exhibit disproportionate attention to Black members of the public regardless of context, (b) sociodemographic characteristics like gender, race/ethnicity, and age are primarily mentioned in BPC about event information, and (c) disproportionate attention introduces disproportionate privacy risks for Black members of the public.