Abstract:Estimating the free energy, as well as other thermodynamic observables, is a key task in lattice field theories. Recently, it has been pointed out that deep generative models can be used in this context [1]. Crucially, these models allow for the direct estimation of the free energy at a given point in parameter space. This is in contrast to existing methods based on Markov chains which generically require integration through parameter space. In this contribution, we will review this novel machine-learning-based estimation method. We will in detail discuss the issue of mode collapse and outline mitigation techniques which are particularly suited for applications at finite temperature.
Abstract:Deep networks are able to learn highly predictive models of video data. Due to video length, a common strategy is to train them on small video snippets. We apply the deep Taylor / LRP technique to understand the deep network's classification decisions, and identify a "border effect": a tendency of the classifier to look mainly at the bordering frames of the input. This effect relates to the step size used to build the video snippet, which we can then tune in order to improve the classifier's accuracy without retraining the model. To our knowledge, this is the the first work to apply the deep Taylor / LRP technique on any video analyzing neural network.