Abstract:Access to informative databases is a crucial part of notable research developments. In the field of domestic audio classification, there have been significant advances in recent years. Although several audio databases exist, these can be limited in terms of the amount of information they provide, such as the exact location of the sound sources, and the associated noise levels. In this work, we detail our approach on generating an unbiased synthetic domestic audio database, consisting of sound scenes and events, emulated in both quiet and noisy environments. Data is carefully curated such that it reflects issues commonly faced in a dementia patients environment, and recreate scenarios that could occur in real-world settings. Similarly, the room impulse response generated is based on a typical one-bedroom apartment at Hebrew SeniorLife Facility. As a result, we present an 11-class database containing excerpts of clean and noisy signals at 5-seconds duration each, uniformly sampled at 16 kHz. Using our baseline model using Continues Wavelet Transform Scalograms and AlexNet, this yielded a weighted F1-score of 86.24 percent.
Abstract:In this paper, a novel method for automatic planogram compliance checking in retail chains is proposed without requiring product template images for training. Product layout is extracted from an input image by means of unsupervised recurring pattern detection and matched via graph matching with the expected product layout specified by a planogram to measure the level of compliance. A divide and conquer strategy is employed to improve the speed. Specifically, the input image is divided into several regions based on the planogram. Recurring patterns are detected in each region respectively and then merged together to estimate the product layout. Experimental results on real data have verified the efficacy of the proposed method. Compared with a template-based method, higher accuracies are achieved by the proposed method over a wide range of products.