Abstract:Unmanned Aerial Vehicle (UAV) swarms offer versatile applications in logistics, agriculture, and surveillance, yet controlling them requires expert knowledge for safety and feasibility. Traditional static methods limit adaptability, while Large Language Models (LLMs) enable natural language control but generate unsafe trajectories due to lacking physical grounding. This paper introduces SkySim, a ROS2-based simulation framework in Gazebo that decouples LLM high-level planning from low-level safety enforcement. Using Gemini 3.5 Pro, SkySim translates user commands (e.g., "Form a circle") into spatial waypoints, informed by real-time drone states. An Artificial Potential Field (APF) safety filter applies minimal adjustments for collision avoidance, kinematic limits, and geo-fencing, ensuring feasible execution at 20 Hz. Experiments with swarms of 3, 10, and 30 Crazyflie drones validate spatial reasoning accuracy (100% across tested geometric primitives), real-time collision prevention, and scalability. SkySim empowers non-experts to iteratively refine behaviors, bridging AI cognition with robotic safety for dynamic environments. Future work targets hardware integration.




Abstract:Access to informative databases is a crucial part of notable research developments. In the field of domestic audio classification, there have been significant advances in recent years. Although several audio databases exist, these can be limited in terms of the amount of information they provide, such as the exact location of the sound sources, and the associated noise levels. In this work, we detail our approach on generating an unbiased synthetic domestic audio database, consisting of sound scenes and events, emulated in both quiet and noisy environments. Data is carefully curated such that it reflects issues commonly faced in a dementia patients environment, and recreate scenarios that could occur in real-world settings. Similarly, the room impulse response generated is based on a typical one-bedroom apartment at Hebrew SeniorLife Facility. As a result, we present an 11-class database containing excerpts of clean and noisy signals at 5-seconds duration each, uniformly sampled at 16 kHz. Using our baseline model using Continues Wavelet Transform Scalograms and AlexNet, this yielded a weighted F1-score of 86.24 percent.