Abstract:In this article, we explore the potential of zero-shot Large Multimodal Models (LMMs) in the domain of drone perception. We focus on person detection and action recognition tasks and evaluate two prominent LMMs, namely YOLO-World and GPT-4V(ision) using a publicly available dataset captured from aerial views. Traditional deep learning approaches rely heavily on large and high-quality training datasets. However, in certain robotic settings, acquiring such datasets can be resource-intensive or impractical within a reasonable timeframe. The flexibility of prompt-based Large Multimodal Models (LMMs) and their exceptional generalization capabilities have the potential to revolutionize robotics applications in these scenarios. Our findings suggest that YOLO-World demonstrates good detection performance. GPT-4V struggles with accurately classifying action classes but delivers promising results in filtering out unwanted region proposals and in providing a general description of the scenery. This research represents an initial step in leveraging LMMs for drone perception and establishes a foundation for future investigations in this area.
Abstract:With this work we are explaining the "You Only Look Once" (YOLO) single-stage object detection approach as a parallel classification of 10647 fixed region proposals. We support this view by showing that each of YOLOs output pixel is attentive to a specific sub-region of previous layers, comparable to a local region proposal. This understanding reduces the conceptual gap between YOLO-like single-stage object detection models, RCNN-like two-stage region proposal based models, and ResNet-like image classification models. In addition, we created interactive exploration tools for a better visual understanding of the YOLO information processing streams: https://limchr.github.io/yolo_visualization
Abstract:This work discusses a learning approach to mask rewarding objects in images using sparse reward signals from an imitation learning dataset. For that, we train an Hourglass network using only feedback from a critic model. The Hourglass network learns to produce a mask to decrease the critic's score of a high score image and increase the critic's score of a low score image by swapping the masked areas between these two images. We trained the model on an imitation learning dataset from the NeurIPS 2020 MineRL Competition Track, where our model learned to mask rewarding objects in a complex interactive 3D environment with a sparse reward signal. This approach was part of the 1st place winning solution in this competition. Video demonstration and code: https://rebrand.ly/critic-guided-segmentation