Abstract:Loss of Signal (LOS) represents a significant cost for operators of optical networks. By studying large sets of real-world Performance Monitoring (PM) data collected from six international optical networks, we find that it is possible to forecast LOS events with good precision 1-7 days before they occur, albeit at relatively low recall, with supervised machine learning (ML). Our study covers twelve facility types, including 100G lines and ETH10G clients. We show that the precision for a given network improves when training on multiple networks simultaneously relative to training on an individual network. Furthermore, we show that it is possible to forecast LOS from all facility types and all networks with a single model, whereas fine-tuning for a particular facility or network only brings modest improvements. Hence our ML models remain effective for optical networks previously unknown to the model, which makes them usable for commercial applications.
Abstract:The development of respiratory failure is common among patients in intensive care units (ICU). Large data quantities from ICU patient monitoring systems make timely and comprehensive analysis by clinicians difficult but are ideal for automatic processing by machine learning algorithms. Early prediction of respiratory system failure could alert clinicians to patients at risk of respiratory failure and allow for early patient reassessment and treatment adjustment. We propose an early warning system that predicts moderate/severe respiratory failure up to 8 hours in advance. Our system was trained on HiRID-II, a data-set containing more than 60,000 admissions to a tertiary care ICU. An alarm is typically triggered several hours before the beginning of respiratory failure. Our system outperforms a clinical baseline mimicking traditional clinical decision-making based on pulse-oximetric oxygen saturation and the fraction of inspired oxygen. To provide model introspection and diagnostics, we developed an easy-to-use web browser-based system to explore model input data and predictions visually.