Abstract:Deep reinforcement learning has been extensively studied in decision-making processes and has demonstrated superior performance over conventional approaches in various fields, including radar resource management (RRM). However, a notable limitation of neural networks is their ``black box" nature and recent research work has increasingly focused on explainable AI (XAI) techniques to describe the rationale behind neural network decisions. One promising XAI method is local interpretable model-agnostic explanations (LIME). However, the sampling process in LIME ignores the correlations between features. In this paper, we propose a modified LIME approach that integrates deep learning (DL) into the sampling process, which we refer to as DL-LIME. We employ DL-LIME within deep reinforcement learning for radar resource management. Numerical results show that DL-LIME outperforms conventional LIME in terms of both fidelity and task performance, demonstrating superior performance with both metrics. DL-LIME also provides insights on which factors are more important in decision making for radar resource management.
Abstract:In this paper, we tackle the task of adaptive time allocation in integrated sensing and communication systems equipped with radar and communication units. The dual-functional radar-communication system's task involves allocating dwell times for tracking multiple targets and utilizing the remaining time for data transmission towards estimated target locations. We introduce a novel constrained deep reinforcement learning (CDRL) approach, designed to optimize resource allocation between tracking and communication under time budget constraints, thereby enhancing target communication quality. Our numerical results demonstrate the efficiency of our proposed CDRL framework, confirming its ability to maximize communication quality in highly dynamic environments while adhering to time constraints.
Abstract:We present a novel adversarial model for authentication systems that use gait patterns recorded by the inertial measurement unit (IMU) built into smartphones. The attack idea is inspired by and named after the concept of a dictionary attack on knowledge (PIN or password) based authentication systems. In particular, this work investigates whether it is possible to build a dictionary of IMUGait patterns and use it to launch an attack or find an imitator who can actively reproduce IMUGait patterns that match the target's IMUGait pattern. Nine physically and demographically diverse individuals walked at various levels of four predefined controllable and adaptable gait factors (speed, step length, step width, and thigh-lift), producing 178 unique IMUGait patterns. Each pattern attacked a wide variety of user authentication models. The deeper analysis of error rates (before and after the attack) challenges the belief that authentication systems based on IMUGait patterns are the most difficult to spoof; further research is needed on adversarial models and associated countermeasures.
Abstract:Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of users. In this paper, we emphasize the detection of fake news by assessing its credibility. By analyzing public fake news data, we show that information on news sources (and authors) can be a strong indicator of credibility. Our findings suggest that an author's history of association with fake news, and the number of authors of a news article, can play a significant role in detecting fake news. Our approach can help improve traditional fake news detection methods, wherein content features are often used to detect fake news.