Abstract:Materials synthesis is vital for innovations such as energy storage, catalysis, electronics, and biomedical devices. Yet, the process relies heavily on empirical, trial-and-error methods guided by expert intuition. Our work aims to support the materials science community by providing a practical, data-driven resource. We have curated a comprehensive dataset of 17K expert-verified synthesis recipes from open-access literature, which forms the basis of our newly developed benchmark, AlchemyBench. AlchemyBench offers an end-to-end framework that supports research in large language models applied to synthesis prediction. It encompasses key tasks, including raw materials and equipment prediction, synthesis procedure generation, and characterization outcome forecasting. We propose an LLM-as-a-Judge framework that leverages large language models for automated evaluation, demonstrating strong statistical agreement with expert assessments. Overall, our contributions offer a supportive foundation for exploring the capabilities of LLMs in predicting and guiding materials synthesis, ultimately paving the way for more efficient experimental design and accelerated innovation in materials science.
Abstract:In this paper we are introducing a new reinforcement learning method for control problems in environments with delayed feedback. Specifically, our method employs stochastic planning, versus previous methods that used deterministic planning. This allows us to embed risk preference in the policy optimization problem. We show that this formulation can recover the optimal policy for problems with deterministic transitions. We contrast our policy with two prior methods from literature. We apply the methodology to simple tasks to understand its features. Then, we compare the performance of the methods in controlling multiple Atari games.
Abstract:A heart murmur is an atypical sound produced by the flow of blood through the heart. It can be a sign of a serious heart condition, so detecting heart murmurs is critical for identifying and managing cardiovascular diseases. However, current methods for identifying murmurous heart sounds do not fully utilize the valuable insights that can be gained by exploring intrinsic properties of heart sound signals. To address this issue, this study proposes a new discriminatory set of multiscale features based on the self-similarity and complexity properties of heart sounds, as derived in the wavelet domain. Self-similarity is characterized by assessing fractal behaviors, while complexity is explored by calculating wavelet entropy. We evaluated the diagnostic performance of these proposed features for detecting murmurs using a set of standard classifiers. When applied to a publicly available heart sound dataset, our proposed wavelet-based multiscale features achieved comparable performance to existing methods with fewer features. This suggests that self-similarity and complexity properties in heart sounds could be potential biomarkers for improving the accuracy of murmur detection.