Abstract:Movable antennas (MAs) enhance flexibility in beamforming gain and interference suppression by adjusting position within certain areas of the transceivers. In this paper, we propose an MA-assisted integrated sensing and communication framework, wherein MAs are deployed for reconfiguring the channel array responses at both the receiver and transmitter of a base station. Then, we develop an optimization framework aimed at maximizing the sensing signal-to-interference-plus-noise-ratio (SINR) by jointly optimizing the receive beamforming vector, the transmit beamforming matrix, and the positions of MAs while meeting the minimum SINR requirement for each user. To address this nonconvex problem involving complex coupled variables, we devise an alternating optimization-based algorithm that incorporates techniques including the Charnes-Cooper transform, second-order Taylor expansion, and successive convex approximation (SCA). Specifically, the closed form of the received vector and the optimal transmit matrix can be first obtained in each iteration. Subsequently, the solutions for the positions of the transmit and receive MAs are obtained using the SCA method based on the second-order Taylor expansion. The simulation results show that the proposed scheme has significant advantages over the other baseline schemes. In particular, the proposed scheme has the ability to match the performance of the fixed position antenna scheme while utilizing fewer resources.
Abstract:The intrinsic integration of the nonorthogonal multiple access (NOMA) and reconfigurable intelligent surface (RIS) techniques is envisioned to be a promising approach to significantly improve both the spectrum efficiency and energy efficiency for future wireless communication networks. In this paper, the physical layer security (PLS) for a RIS-aided NOMA 6G networks is investigated, in which a RIS is deployed to assist the two "dead zone" NOMA users and both internal and external eavesdropping are considered. For the scenario with only internal eavesdropping, we consider the worst case that the near-end user is untrusted and may try to intercept the information of far-end user. A joint beamforming and power allocation sub-optimal scheme is proposed to improve the system PLS. Then we extend our work to a scenario with both internal and external eavesdropping. Two sub-scenarios are considered in this scenario: one is the sub-scenario without channel state information (CSI) of eavesdroppers, and another is the sub-scenario where the eavesdroppers' CSI are available. For the both sub-scenarios, a noise beamforming scheme is introduced to be against the external eavesdroppers. An optimal power allocation scheme is proposed to further improve the system physical security for the second sub-scenario. Simulation results show the superior performance of the proposed schemes. Moreover, it has also been shown that increasing the number of reflecting elements can bring more gain in secrecy performance than that of the transmit antennas.