Abstract:Adversary emulation is an offensive exercise that provides a comprehensive assessment of a system's resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical systems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.
Abstract:Faults in HVAC systems degrade thermal comfort and energy efficiency in buildings and have received significant attention from the research community, with data driven methods gaining in popularity. Yet the lack of labeled data, such as normal versus faulty operational status, has slowed the application of machine learning to HVAC systems. In addition, for any particular building, there may be an insufficient number of observed faults over a reasonable amount of time for training. To overcome these challenges, we present a transfer methodology for a novel Bayesian classifier designed to distinguish between normal operations and faulty operations. The key is to train this classifier on a building with a large amount of sensor and fault data (for example, via simulation or standard test data) then transfer the classifier to a new building using a small amount of normal operations data from the new building. We demonstrate a proof-of-concept for transferring a classifier between architecturally similar buildings in different climates and show few samples are required to maintain classification precision and recall.