Abstract:Link prediction is one of the central problems in graph mining. However, recent studies highlight the importance of higher-order network analysis, where complex structures called motifs are the first-class citizens. We first show that existing link prediction schemes fail to effectively predict motifs. To alleviate this, we establish a general motif prediction problem and we propose several heuristics that assess the chances for a specified motif to appear. To make the scores realistic, our heuristics consider - among others - correlations between links, i.e., the potential impact of some arriving links on the appearance of other links in a given motif. Finally, for highest accuracy, we develop a graph neural network (GNN) architecture for motif prediction. Our architecture offers vertex features and sampling schemes that capture the rich structural properties of motifs. While our heuristics are fast and do not need any training, GNNs ensure highest accuracy of predicting motifs, both for dense (e.g., k-cliques) and for sparse ones (e.g., k-stars). We consistently outperform the best available competitor by more than 10% on average and up to 32% in area under the curve. Importantly, the advantages of our approach over schemes based on uncorrelated link prediction increase with the increasing motif size and complexity. We also successfully apply our architecture for predicting more arbitrary clusters and communities, illustrating its potential for graph mining beyond motif analysis.
Abstract:Predictive power has always been the main research focus of learning algorithms. While the general approach for these algorithms is to consider all possible attributes in a dataset to best predict the response of interest, an important branch of research is focused on sparse learning. Indeed, in many practical settings we believe that only an extremely small combination of different attributes affect the response. However even sparse-learning methods can still preserve a high number of attributes in high-dimensional settings and possibly deliver inconsistent prediction performance. The latter methods can also be hard to interpret for researchers and practitioners, a problem which is even more relevant for the ``black-box''-type mechanisms of many learning approaches. Finally, there is often a problem of replicability since not all data-collection procedures measure (or observe) the same attributes and therefore cannot make use of proposed learners for testing purposes. To address all the previous issues, we propose to study a procedure that combines screening and wrapper methods and aims to find a library of extremely low-dimensional attribute combinations (with consequent low data collection and storage costs) in order to (i) match or improve the predictive performance of any particular learning method which uses all attributes as an input (including sparse learners); (ii) provide a low-dimensional network of attributes easily interpretable by researchers and practitioners; and (iii) increase the potential replicability of results due to a diversity of attribute combinations defining strong learners with equivalent predictive power. We call this algorithm ``Sparse Wrapper AlGorithm'' (SWAG).