Abstract:In trauma and critical care settings, rapid and precise intravascular access is key to patients' survival. Our research aims at ensuring this access, even when skilled medical personnel are not readily available. Vessel bifurcations are anatomical landmarks that can guide the safe placement of catheters or needles during medical procedures. Although ultrasound is advantageous in navigating anatomical landmarks in emergency scenarios due to its portability and safety, to our knowledge no existing algorithm can autonomously extract vessel bifurcations using ultrasound images. This is primarily due to the limited availability of ground truth data, in particular, data from live subjects, needed for training and validating reliable models. Researchers often resort to using data from anatomical phantoms or simulations. We introduce BIFURC, Bifurcation Identification for Ultrasound-driven Robot Cannulation, a novel algorithm that identifies vessel bifurcations and provides optimal needle insertion sites for an autonomous robotic cannulation system. BIFURC integrates expert knowledge with deep learning techniques to efficiently detect vessel bifurcations within the femoral region and can be trained on a limited amount of in-vivo data. We evaluated our algorithm using a medical phantom as well as real-world experiments involving live pigs. In all cases, BIFURC consistently identified bifurcation points and needle insertion locations in alignment with those identified by expert clinicians.
Abstract:Efficient intravascular access in trauma and critical care significantly impacts patient outcomes. However, the availability of skilled medical personnel in austere environments is often limited. Autonomous robotic ultrasound systems can aid in needle insertion for medication delivery and support non-experts in such tasks. Despite advances in autonomous needle insertion, inaccuracies in vessel segmentation predictions pose risks. Understanding the uncertainty of predictive models in ultrasound imaging is crucial for assessing their reliability. We introduce MSU-Net, a novel multistage approach for training an ensemble of U-Nets to yield accurate ultrasound image segmentation maps. We demonstrate substantial improvements, 18.1% over a single Monte Carlo U-Net, enhancing uncertainty evaluations, model transparency, and trustworthiness. By highlighting areas of model certainty, MSU-Net can guide safe needle insertions, empowering non-experts to accomplish such tasks.
Abstract:We recommend using a model-centric, Boolean Satisfiability (SAT) formalism to obtain useful explanations of trained model behavior, different and complementary to what can be gleaned from LIME and SHAP, popular data-centric explanation tools in Artificial Intelligence (AI). We compare and contrast these methods, and show that data-centric methods may yield brittle explanations of limited practical utility. The model-centric framework, however, can offer actionable insights into risks of using AI models in practice. For critical applications of AI, split-second decision making is best informed by robust explanations that are invariant to properties of data, the capability offered by model-centric frameworks.