Abstract:Training generalist robot agents is an immensely difficult feat due to the requirement to perform a huge range of tasks in many different environments. We propose selectively training robots based on end-user preferences instead. Given a factory model that lets an end user instruct a robot to perform lower-level actions (e.g. 'Move left'), we show that end users can collect demonstrations using language to train their home model for higher-level tasks specific to their needs (e.g. 'Open the top drawer and put the block inside'). We demonstrate this hierarchical robot learning framework on robot manipulation tasks using RLBench environments. Our method results in a 16% improvement in skill success rates compared to a baseline method. In further experiments, we explore the use of the large vision-language model (VLM), Bard, to automatically break down tasks into sequences of lower-level instructions, aiming to bypass end-user involvement. The VLM is unable to break tasks down to our lowest level, but does achieve good results breaking high-level tasks into mid-level skills. We have a supplemental video and additional results at talk-through-it.github.io.
Abstract:This paper primarily focuses on evaluating and benchmarking the robustness of visual representations in the context of object assembly tasks. Specifically, it investigates the alignment and insertion of objects with geometrical extrusions and intrusions, commonly referred to as a peg-in-hole task. The accuracy required to detect and orient the peg and the hole geometry in SE(3) space for successful assembly poses significant challenges. Addressing this, we employ a general framework in visuomotor policy learning that utilizes visual pretraining models as vision encoders. Our study investigates the robustness of this framework when applied to a dual-arm manipulation setup, specifically to the grasp variations. Our quantitative analysis shows that existing pretrained models fail to capture the essential visual features necessary for this task. However, a visual encoder trained from scratch consistently outperforms the frozen pretrained models. Moreover, we discuss rotation representations and associated loss functions that substantially improve policy learning. We present a novel task scenario designed to evaluate the progress in visuomotor policy learning, with a specific focus on improving the robustness of intricate assembly tasks that require both geometrical and spatial reasoning. Videos, additional experiments, dataset, and code are available at https://bit.ly/geometric-peg-in-hole .