Abstract:We propose a modified teacher-student training for the extraction of frame-wise speaker embeddings that allows for an effective diarization of meeting scenarios containing partially overlapping speech. To this end, a geodesic distance loss is used that enforces the embeddings computed from regions with two active speakers to lie on the shortest path on a sphere between the points given by the d-vectors of each of the active speakers. Using those frame-wise speaker embeddings in clustering-based diarization outperforms segment-level clustering-based diarization systems such as VBx and Spectral Clustering. By extending our approach to a mixture-model-based diarization, the performance can be further improved, approaching the diarization error rates of diarization systems that use a dedicated overlap detection, and outperforming these systems when also employing an additional overlap detection.
Abstract:Using a Teacher-Student training approach we developed a speaker embedding extraction system that outputs embeddings at frame rate. Given this high temporal resolution and the fact that the student produces sensible speaker embeddings even for segments with speech overlap, the frame-wise embeddings serve as an appropriate representation of the input speech signal for an end-to-end neural meeting diarization (EEND) system. We show in experiments that this representation helps mitigate a well-known problem of EEND systems: when increasing the number of speakers the diarization performance drop is significantly reduced. We also introduce block-wise processing to be able to diarize arbitrarily long meetings.
Abstract:We introduce a monaural neural speaker embeddings extractor that computes an embedding for each speaker present in a speech mixture. To allow for supervised training, a teacher-student approach is employed: the teacher computes the target embeddings from each speaker's utterance before the utterances are added to form the mixture, and the student embedding extractor is then tasked to reproduce those embeddings from the speech mixture at its input. The system much more reliably verifies the presence or absence of a given speaker in a mixture than a conventional speaker embedding extractor, and even exhibits comparable performance to a multi-channel approach that exploits spatial information for embedding extraction. Further, it is shown that a speaker embedding computed from a mixture can be used to check for the presence of that speaker in another mixture.