We propose a modified teacher-student training for the extraction of frame-wise speaker embeddings that allows for an effective diarization of meeting scenarios containing partially overlapping speech. To this end, a geodesic distance loss is used that enforces the embeddings computed from regions with two active speakers to lie on the shortest path on a sphere between the points given by the d-vectors of each of the active speakers. Using those frame-wise speaker embeddings in clustering-based diarization outperforms segment-level clustering-based diarization systems such as VBx and Spectral Clustering. By extending our approach to a mixture-model-based diarization, the performance can be further improved, approaching the diarization error rates of diarization systems that use a dedicated overlap detection, and outperforming these systems when also employing an additional overlap detection.