Abstract:This research focused on utilizing ROS2 and Gazebo for simulating the TurtleBot3 robot, with the aim of exploring autonomous navigation capabilities. While the study did not achieve full autonomous navigation, it successfully established the connection between ROS2 and Gazebo and enabled manual simulation of the robot's movements. The primary objective was to understand how these tools can be integrated to support autonomous functions, providing valuable insights into the development process. The results of this work lay the groundwork for future research into autonomous robotics. The topic is particularly engaging for both teenagers and adults interested in discovering how robots function independently and the underlying technology involved. This research highlights the potential for further advancements in autonomous systems and serves as a stepping stone for more in-depth studies in the field.
Abstract:This research examines the impact of robotics groups in higher education, focusing on how these activities influence the development of transversal skills and academic motivation. While robotics goes beyond just technical knowledge, participation in these groups has been observed to significantly improve skills such as teamwork, creativity, and problem-solving. The study, conducted with the UruBots group, shows that students involved in robotics not only reinforce their theoretical knowledge but also increase their interest in research and academic commitment. These results highlight the potential of educational robotics to transform the learning experience by promoting active and collaborative learning. This work lays the groundwork for future research on how robotics can continue to enhance higher education and motivate students in their academic and professional careers
Abstract:This article presents an application that evaluates the feasibility of humanoid robots as interactive guides in art museums. The application entailes programming a NAO robot and a chatbot to provide information about art pieces in a simulated museum environment. In this controlled scenario, the learning employees interact with the robot and the chatbot. The result is a skilled participation in the interactions, along with the effectiveness of the robot and chatbot that communicates the basic details of the art objects. You see natural and fluid interactions between the students and the robot. This suggests that the addition of humanoid robots to museums may provide a better experience for visitors, but also the need to continue to do more to optimize the quality of interaction. This study contributes to understanding the possibilities and requirements of applying humanoid technologies in a cultural context.