Abstract:We propose a neural network architecture for learning vector representations of hotels. Unlike previous works, which typically only use user click information for learning item embeddings, we propose a framework that combines several sources of data, including user clicks, hotel attributes (e.g., property type, star rating, average user rating), amenity information (e.g., the hotel has free Wi-Fi or free breakfast), and geographic information. During model training, a joint embedding is learned from all of the above information. We show that including structured attributes about hotels enables us to make better predictions in a downstream task than when we rely exclusively on click data. We train our embedding model on more than 40 million user click sessions from a leading online travel platform and learn embeddings for more than one million hotels. Our final learned embeddings integrate distinct sub-embeddings for user clicks, hotel attributes, and geographic information, providing an interpretable representation that can be used flexibly depending on the application. We show empirically that our model generates high-quality representations that boost the performance of a hotel recommendation system in addition to other applications. An important advantage of the proposed neural model is that it addresses the cold-start problem for hotels with insufficient historical click information by incorporating additional hotel attributes which are available for all hotels.
Abstract:Single Image Super Resolution (SISR) is a well-researched problem with broad commercial relevance. However, most of the SISR literature focuses on small-size images under 500px, whereas business needs can mandate the generation of very high resolution images. At Expedia Group, we were tasked with generating images of at least 2000px for display on the website, four times greater than the sizes typically reported in the literature. This requirement poses a challenge that state-of-the-art models, validated on small images, have not been proven to handle. In this paper, we investigate solutions to the problem of generating high-quality images for large-scale super resolution in a commercial setting. We find that training a generative adversarial network (GAN) with attention from scratch using a large-scale lodging image data set generates images with high PSNR and SSIM scores. We describe a novel attentional SISR model for large-scale images, A-SRGAN, that uses a Flexible Self Attention layer to enable processing of large-scale images. We also describe a distributed algorithm which speeds up training by around a factor of five.