Abstract:Early diagnosis of Alzheimer's Disease (AD) faces multiple data-related challenges, including high variability in patient data, limited access to specialized diagnostic tests, and overreliance on single-type indicators. These challenges are exacerbated by the progressive nature of AD, where subtle pathophysiological changes often precede clinical symptoms by decades. To address these limitations, this study proposes a novel approach that takes advantage of routinely collected general laboratory test histories for the early detection and differential diagnosis of AD. By modeling lab test sequences as "sentences", we apply word embedding techniques to capture latent relationships between tests and employ deep time series models, including long-short-term memory (LSTM) and Transformer networks, to model temporal patterns in patient records. Experimental results demonstrate that our approach improves diagnostic accuracy and enables scalable and costeffective AD screening in diverse clinical settings.
Abstract:Retrieval-augmented generation (RAG) mitigates hallucination in Large Language Models (LLMs) by using query pipelines to retrieve relevant external information and grounding responses in retrieved knowledge. However, query pipeline optimization for cancer patient question-answering (CPQA) systems requires separately optimizing multiple components with domain-specific considerations. We propose a novel three-aspect optimization approach for the RAG query pipeline in CPQA systems, utilizing public biomedical databases like PubMed and PubMed Central. Our optimization includes: (1) document retrieval, utilizing a comparative analysis of NCBI resources and introducing Hybrid Semantic Real-time Document Retrieval (HSRDR); (2) passage retrieval, identifying optimal pairings of dense retrievers and rerankers; and (3) semantic representation, introducing Semantic Enhanced Overlap Segmentation (SEOS) for improved contextual understanding. On a custom-developed dataset tailored for cancer-related inquiries, our optimized RAG approach improved the answer accuracy of Claude-3-haiku by 5.24% over chain-of-thought prompting and about 3% over a naive RAG setup. This study highlights the importance of domain-specific query optimization in realizing the full potential of RAG and provides a robust framework for building more accurate and reliable CPQA systems, advancing the development of RAG-based biomedical systems.