Abstract:End-to-end generation of musical audio using deep learning techniques has seen an explosion of activity recently. However, most models concentrate on generating fully mixed music in response to abstract conditioning information. In this work, we present an alternative paradigm for producing music generation models that can listen and respond to musical context. We describe how such a model can be constructed using a non-autoregressive, transformer-based model architecture and present a number of novel architectural and sampling improvements. We train the described architecture on both an open-source and a proprietary dataset. We evaluate the produced models using standard quality metrics and a new approach based on music information retrieval descriptors. The resulting model reaches the audio quality of state-of-the-art text-conditioned models, as well as exhibiting strong musical coherence with its context.
Abstract:Construction progress monitoring (CPM) is essential for effective project management, ensuring on-time and on-budget delivery. Traditional CPM methods often rely on manual inspection and reporting, which are time-consuming and prone to errors. This paper proposes a novel approach for automated CPM using state-of-the-art object detection algorithms. The proposed method leverages e.g. YOLOv8's real-time capabilities and high accuracy to identify and track construction elements within site images and videos. A dataset was created, consisting of various building elements and annotated with relevant objects for training and validation. The performance of the proposed approach was evaluated using standard metrics, such as precision, recall, and F1-score, demonstrating significant improvement over existing methods. The integration of Computer Vision into CPM provides stakeholders with reliable, efficient, and cost-effective means to monitor project progress, facilitating timely decision-making and ultimately contributing to the successful completion of construction projects.