Abstract:Connectionist temporal classification (CTC) training criterion provides an alternative acoustic model (AM) training strategy for automatic speech recognition in an end-to-end fashion. Although CTC criterion benefits acoustic modeling without needs of time-aligned phonetics transcription, it remains in need of efforts of tweaking to convergence, especially in the resource-constrained scenario. In this paper, we proposed to improve CTC training by incorporating acoustic landmarks. We tailored a new set of acoustic landmarks to help CTC training converge more quickly while also reducing recognition error rates. We leveraged new target label sequences mixed with both phone and manner changes to guide CTC training. Experiments on TIMIT demonstrated that CTC based acoustic models converge faster and smoother significantly when they are augmented by acoustic landmarks. The models pretrained with mixed target labels can be finetuned furthermore, which reduced phone error rate by 8.72% on TIMIT. The consistent performance gain is also observed on reduced TIMIT and WSJ as well, in which case, we are the first to succeed in testing the effectiveness of acoustic landmark theory on mid-sized ASR tasks.
Abstract:Furui first demonstrated that the identity of both consonant and vowel can be perceived from the C-V transition; later, Stevens proposed that acoustic landmarks are the primary cues for speech perception, and that steady-state regions are secondary or supplemental. Acoustic landmarks are perceptually salient, even in a language one doesn't speak, and it has been demonstrated that non-speakers of the language can identify features such as the primary articulator of the landmark. These factors suggest a strategy for developing language-independent automatic speech recognition: landmarks can potentially be learned once from a suitably labeled corpus and rapidly applied to many other languages. This paper proposes enhancing the cross-lingual portability of a neural network by using landmarks as the secondary task in multi-task learning (MTL). The network is trained in a well-resourced source language with both phone and landmark labels (English), then adapted to an under-resourced target language with only word labels (Iban). Landmark-tasked MTL reduces source-language phone error rate by 2.9% relative, and reduces target-language word error rate by 1.9%-5.9% depending on the amount of target-language training data. These results suggest that landmark-tasked MTL causes the DNN to learn hidden-node features that are useful for cross-lingual adaptation.