Abstract:Accurately recommending products has long been a subject requiring in-depth research. This study proposes a multimodal paradigm for clothing recommendations. Specifically, it designs a multimodal analysis method that integrates clothing description texts and images, utilizing a pre-trained large language model to deeply explore the hidden meanings of users and products. Additionally, a variational encoder is employed to learn the relationship between user information and products to address the cold start problem in recommendation systems. This study also validates the significant performance advantages of this method over various recommendation system methods through extensive ablation experiments, providing crucial practical guidance for the comprehensive optimization of recommendation systems.
Abstract:Recommendation systems have become an important solution to information search problems. This article proposes a neural matrix factorization recommendation system model based on the multimodal large language model called BoNMF. This model combines BoBERTa's powerful capabilities in natural language processing, ViT in computer in vision, and neural matrix decomposition technology. By capturing the potential characteristics of users and items, and after interacting with a low-dimensional matrix composed of user and item IDs, the neural network outputs the results. recommend. Cold start and ablation experimental results show that the BoNMF model exhibits excellent performance on large public data sets and significantly improves the accuracy of recommendations.