Abstract:Mobile Edge Computing (MEC) assisted by Unmanned Aerial Vehicle (UAV) has been widely investigated as a promising system for future Internet-of-Things (IoT) networks. In this context, delay-sensitive tasks of IoT devices may either be processed locally or offloaded for further processing to a UAV or to the cloud. This paper, by attributing task queues to each IoT device, the UAV, and the cloud, proposes a real-time resource allocation framework in a UAV-aided MEC system. Specifically, aimed at characterizing a long-term trade-off between the time-averaged aggregate processed data (PD) and the time-averaged aggregate communication delay (CD), a resource allocation optimization problem is formulated. This problem optimizes communication and computation resources as well as the UAV motion trajectory, while guaranteeing queue stability. To address this long-term time-averaged problem, a Lyapunov optimization framework is initially leveraged to obtain an equivalent short-term optimization problem. Subsequently, we reformulate the short-term problem in a Markov Decision Process (MDP) form, where a Deep Q Network (DQN) model is trained to optimize its variables. Extensive simulations demonstrate that the proposed resource allocation scheme improves the system performance by up to 36\% compared to baseline models.
Abstract:With the development of next-generation wireless networks, the Internet of Things (IoT) is evolving towards the intelligent IoT (iIoT), where intelligent applications usually have stringent delay and jitter requirements. In order to provide low-latency services to heterogeneous users in the emerging iIoT, multi-tier computing was proposed by effectively combining edge computing and fog computing. More specifically, multi-tier computing systems compensate for cloud computing through task offloading and dispersing computing tasks to multi-tier nodes along the continuum from the cloud to things. In this paper, we investigate key techniques and directions for wireless communications and resource allocation approaches to enable task offloading in multi-tier computing systems. A multi-tier computing model, with its main functionality and optimization methods, is presented in details. We hope that this paper will serve as a valuable reference and guide to the theoretical, algorithmic, and systematic opportunities of multi-tier computing towards next-generation wireless networks.