Abstract:Thanks to recent advancements in machine learning, vector-based methods have been adopted in many modern information retrieval (IR) systems. While showing promising retrieval performance, these approaches typically fail to explain why a particular document is retrieved as a query result to address explainable information retrieval(XIR). Knowledge graphs record structured information about entities and inherently explainable relationships. Most of existing XIR approaches focus exclusively on the retrieval model with little consideration on using existing knowledge graphs for providing an explanation. In this paper, we propose a general architecture to incorporate knowledge graphs for XIR in various steps of the retrieval process. Furthermore, we create two instances of the architecture for different types of explanation. We evaluate our approaches on well-known IR benchmarks using standard metrics and compare them with vector-based methods as baselines.
Abstract:Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.