Digital Humanities Laboratory, EPFL, Switzerland
Abstract:We present an analysis of 12 million instances of privacy-relevant reviews publicly visible on the Google Play Store that span a 10 year period. By leveraging state of the art NLP techniques, we examine what users have been writing about privacy along multiple dimensions: time, countries, app types, diverse privacy topics, and even across a spectrum of emotions. We find consistent growth of privacy-relevant reviews, and explore topics that are trending (such as Data Deletion and Data Theft), as well as those on the decline (such as privacy-relevant reviews on sensitive permissions). We find that although privacy reviews come from more than 200 countries, 33 countries provide 90% of privacy reviews. We conduct a comparison across countries by examining the distribution of privacy topics a country's users write about, and find that geographic proximity is not a reliable indicator that nearby countries have similar privacy perspectives. We uncover some countries with unique patterns and explore those herein. Surprisingly, we uncover that it is not uncommon for reviews that discuss privacy to be positive (32%); many users express pleasure about privacy features within apps or privacy-focused apps. We also uncover some unexpected behaviors, such as the use of reviews to deliver privacy disclaimers to developers. Finally, we demonstrate the value of analyzing app reviews with our approach as a complement to existing methods for understanding users' perspectives about privacy
Abstract:In recent years there have been multiple successful attempts tackling document processing problems separately by designing task specific hand-tuned strategies. We argue that the diversity of historical document processing tasks prohibits to solve them one at a time and shows a need for designing generic approaches in order to handle the variability of historical series. In this paper, we address multiple tasks simultaneously such as page extraction, baseline extraction, layout analysis or multiple typologies of illustrations and photograph extraction. We propose an open-source implementation of a CNN-based pixel-wise predictor coupled with task dependent post-processing blocks. We show that a single CNN-architecture can be used across tasks with competitive results. Moreover most of the task-specific post-precessing steps can be decomposed in a small number of simple and standard reusable operations, adding to the flexibility of our approach.