Abstract:This paper aims to achieve single-channel target speech extraction (TSE) in enclosures by solely utilizing distance information. This is the first work that utilizes only distance cues without using speaker physiological information for single-channel TSE. Inspired by recent single-channel Distance-based separation and extraction methods, we introduce a novel model that efficiently fuses distance information with time-frequency (TF) bins for TSE. Experimental results in both single-room and multi-room scenarios demonstrate the feasibility and effectiveness of our approach. This method can also be employed to estimate the distances of different speakers in mixed speech. Online demos are available at https://runwushi.github.io/distance-demo-page.
Abstract:Unmanned aerial vehicles (UAVs) have revolutionized search and rescue (SAR) operations, but the lack of specialized human detection datasets for training machine learning models poses a significant challenge.To address this gap, this paper introduces the Combination to Application (C2A) dataset, synthesized by overlaying human poses onto UAV-captured disaster scenes. Through extensive experimentation with state-of-the-art detection models, we demonstrate that models fine-tuned on the C2A dataset exhibit substantial performance improvements compared to those pre-trained on generic aerial datasets. Furthermore, we highlight the importance of combining the C2A dataset with general human datasets to achieve optimal performance and generalization across various scenarios. This points out the crucial need for a tailored dataset to enhance the effectiveness of SAR operations. Our contributions also include developing dataset creation pipeline and integrating diverse human poses and disaster scenes information to assess the severity of disaster scenarios. Our findings advocate for future developments, to ensure that SAR operations benefit from the most realistic and effective AI-assisted interventions possible.
Abstract:The demand for accurate object detection in aerial imagery has surged with the widespread use of drones and satellite technology. Traditional object detection models, trained on datasets biased towards large objects, struggle to perform optimally in aerial scenarios where small, densely clustered objects are prevalent. To address this challenge, we present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture. We employ a range of datasets, including VisDrone-2023, SeaDroneSee, VEDAI, and NWPU VHR-10, to evaluate our model's performance. Our Super Resolved YOLOv5 architecture features Transformer encoder blocks, allowing the model to capture global context and context information, leading to improved detection results, especially in high-density, occluded conditions. This lightweight model not only delivers improved accuracy but also ensures efficient resource utilization, making it well-suited for real-time applications. Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects, underlining the significance of dataset choice and architectural adaptation for this specific task. In particular, the method achieves 52.5% mAP on VisDrone, exceeding top prior works. This approach promises to significantly advance object detection in aerial imagery, contributing to more accurate and reliable results in a variety of real-world applications.