Abstract:Parameterized quantum circuits as machine learning models are typically well described by their representation as a partial Fourier series of the input features, with frequencies uniquely determined by the feature map's generator Hamiltonians. Ordinarily, these data-encoding generators are chosen in advance, fixing the space of functions that can be represented. In this work we consider a generalization of quantum models to include a set of trainable parameters in the generator, leading to a trainable frequency (TF) quantum model. We numerically demonstrate how TF models can learn generators with desirable properties for solving the task at hand, including non-regularly spaced frequencies in their spectra and flexible spectral richness. Finally, we showcase the real-world effectiveness of our approach, demonstrating an improved accuracy in solving the Navier-Stokes equations using a TF model with only a single parameter added to each encoding operation. Since TF models encompass conventional fixed frequency models, they may offer a sensible default choice for variational quantum machine learning.
Abstract:The popularisation of neural networks has seen incredible advances in pattern recognition, driven by the supervised learning of human annotations. However, this approach is unsustainable in relation to the dramatically increasing size of real-world datasets. This has led to a resurgence in self-supervised learning, a paradigm whereby the model generates its own supervisory signal from the data. Here we propose a hybrid quantum-classical neural network architecture for contrastive self-supervised learning and test its effectiveness in proof-of-principle experiments. Interestingly, we observe a numerical advantage for the learning of visual representations using small-scale quantum neural networks over equivalently structured classical networks, even when the quantum circuits are sampled with only 100 shots. Furthermore, we apply our best quantum model to classify unseen images on the ibmq_paris quantum computer and find that current noisy devices can already achieve equal accuracy to the equivalent classical model on downstream tasks.