Abstract:We propose LauraTSE, an Auto-Regressive Decoder-Only Language Model for Target Speaker Extraction (TSE) based on the LauraGPT backbone. It employs a small-scale auto-regressive decoder-only language model which takes the continuous representations for both the mixture and the reference speeches and produces the first few layers of the target speech's discrete codec representations. In addition, a one-step encoder-only language model reconstructs the sum of the predicted codec embeddings using both the mixture and the reference information. Our approach achieves superior or comparable performance to existing generative and discriminative TSE models. To the best of our knowledge, LauraTSE is the first single-task TSE model to leverage an auto-regressive decoder-only language model as the backbone.
Abstract:We propose TSELM, a novel target speaker extraction network that leverages discrete tokens and language models. TSELM utilizes multiple discretized layers from WavLM as input tokens and incorporates cross-attention mechanisms to integrate target speaker information. Language models are employed to capture the sequence dependencies, while a scalable HiFi-GAN is used to reconstruct the audio from the tokens. By applying a cross-entropy loss, TSELM models the probability distribution of output tokens, thus converting the complex regression problem of audio generation into a classification task. Experimental results show that TSELM achieves excellent results in speech quality and comparable results in speech intelligibility.
Abstract:In this demo, we introduce FedCampus, a privacy-preserving mobile application for smart \underline{campus} with \underline{fed}erated learning (FL) and federated analytics (FA). FedCampus enables cross-platform on-device FL/FA for both iOS and Android, supporting continuously models and algorithms deployment (MLOps). Our app integrates privacy-preserving processed data via differential privacy (DP) from smartwatches, where the processed parameters are used for FL/FA through the FedCampus backend platform. We distributed 100 smartwatches to volunteers at Duke Kunshan University and have successfully completed a series of smart campus tasks featuring capabilities such as sleep tracking, physical activity monitoring, personalized recommendations, and heavy hitters. Our project is opensourced at https://github.com/FedCampus/FedCampus_Flutter. See the FedCampus video at https://youtu.be/k5iu46IjA38.
Abstract:We present FedKit, a federated learning (FL) system tailored for cross-platform FL research on Android and iOS devices. FedKit pipelines cross-platform FL development by enabling model conversion, hardware-accelerated training, and cross-platform model aggregation. Our FL workflow supports flexible machine learning operations (MLOps) in production, facilitating continuous model delivery and training. We have deployed FedKit in a real-world use case for health data analysis on university campuses, demonstrating its effectiveness. FedKit is open-source at https://github.com/FedCampus/FedKit.