Vrije Universiteit Brussel
Abstract:In eXplainable Constraint Solving (XCS), it is common to extract a Minimal Unsatisfiable Subset (MUS) from a set of unsatisfiable constraints. This helps explain to a user why a constraint specification does not admit a solution. Finding MUSes can be computationally expensive for highly symmetric problems, as many combinations of constraints need to be considered. In the traditional context of solving satisfaction problems, symmetry has been well studied, and effective ways to detect and exploit symmetries during the search exist. However, in the setting of finding MUSes of unsatisfiable constraint programs, symmetries are understudied. In this paper, we take inspiration from existing symmetry-handling techniques and adapt well-known MUS-computation methods to exploit symmetries in the specification, speeding-up overall computation time. Our results display a significant reduction of runtime for our adapted algorithms compared to the baseline on symmetric problems.
Abstract:We propose a stable model semantics for higher-order logic programs. Our semantics is developed using Approximation Fixpoint Theory (AFT), a powerful formalism that has successfully been used to give meaning to diverse non-monotonic formalisms. The proposed semantics generalizes the classical two-valued stable model semantics of (Gelfond and Lifschitz 1988) as-well-as the three-valued one of (Przymusinski 1990), retaining their desirable properties. Due to the use of AFT, we also get for free alternative semantics for higher-order logic programs, namely supported model, Kripke-Kleene, and well-founded. Additionally, we define a broad class of stratified higher-order logic programs and demonstrate that they have a unique two-valued higher-order stable model which coincides with the well-founded semantics of such programs. We provide a number of examples in different application domains, which demonstrate that higher-order logic programming under the stable model semantics is a powerful and versatile formalism, which can potentially form the basis of novel ASP systems.
Abstract:We analyze how symmetries can be used to compress structures (also known as interpretations) onto a smaller domain without loss of information. This analysis suggests the possibility to solve satisfiability problems in the compressed domain for better performance. Thus, we propose a 2-step novel method: (i) the sentence to be satisfied is automatically translated into an equisatisfiable sentence over a ``lifted'' vocabulary that allows domain compression; (ii) satisfiability of the lifted sentence is checked by growing the (initially unknown) compressed domain until a satisfying structure is found. The key issue is to ensure that this satisfying structure can always be expanded into an uncompressed structure that satisfies the original sentence to be satisfied. We present an adequate translation for sentences in typed first-order logic extended with aggregates. Our experimental evaluation shows large speedups for generative configuration problems. The method also has applications in the verification of software operating on complex data structures. Further refinements of the translation are left for future work.
Abstract:Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of non-monotonic logics. In recent work, AFT was generalized to non-deterministic operators, i.e.\ operators whose range are sets of elements rather than single elements. In this paper, we make three further contributions to non-deterministic AFT: (1) we define and study ultimate approximations of non-deterministic operators, (2) we give an algebraic formulation of the semi-equilibrium semantics by Amendola, et al., and (3) we generalize the characterisations of disjunctive logic programs to disjunctive logic programs with aggregates.
Abstract:We build on a recently proposed method for stepwise explaining solutions of Constraint Satisfaction Problems (CSP) in a human-understandable way. An explanation here is a sequence of simple inference steps where simplicity is quantified using a cost function. The algorithms for explanation generation rely on extracting Minimal Unsatisfiable Subsets (MUS) of a derived unsatisfiable formula, exploiting a one-to-one correspondence between so-called non-redundant explanations and MUSs. However, MUS extraction algorithms do not provide any guarantee of subset minimality or optimality with respect to a given cost function. Therefore, we build on these formal foundations and tackle the main points of improvement, namely how to generate explanations efficiently that are provably optimal (with respect to the given cost metric). For that, we developed (1) a hitting set-based algorithm for finding the optimal constrained unsatisfiable subsets; (2) a method for re-using relevant information over multiple algorithm calls; and (3) methods exploiting domain-specific information to speed up the explanation sequence generation. We experimentally validated our algorithms on a large number of CSP problems. We found that our algorithms outperform the MUS approach in terms of explanation quality and computational time (on average up to 56 % faster than a standard MUS approach).
Abstract:Link Traversal-based Query Processing (ltqp), in which a sparql query is evaluated over a web of documents rather than a single dataset, is often seen as a theoretically interesting yet impractical technique. However, in a time where the hypercentralization of data has increasingly come under scrutiny, a decentralized Web of Data with a simple document-based interface is appealing, as it enables data publishers to control their data and access rights. While ltqp allows evaluating complex queries over such webs, it suffers from performance issues (due to the high number of documents containing data) as well as information quality concerns (due to the many sources providing such documents). In existing ltqp approaches, the burden of finding sources to query is entirely in the hands of the data consumer. In this paper, we argue that to solve these issues, data publishers should also be able to suggest sources of interest and guide the data consumer towards relevant and trustworthy data. We introduce a theoretical framework that enables such guided link traversal and study its properties. We illustrate with a theoretic example that this can improve query results and reduce the number of network requests. We evaluate our proposal experimentally on a virtual linked web with specifications and indeed observe that not just the data quality but also the efficiency of querying improves. Under consideration in Theory and Practice of Logic Programming (TPLP).
Abstract:Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics of different formalisms for nonmonotonic reasoning, such as logic programming, default logic and autoepistemic logic. In this paper, we extend AFT to dealing with non-deterministic constructs that allow to handle indefinite information, represented e.g. by disjunctive formulas. This is done by generalizing the main constructions and corresponding results of AFT to non-deterministic operators, whose ranges are sets of elements rather than single elements. The applicability and usefulness of this generalization is illustrated in the context of disjunctive logic programming.
Abstract:Justification theory is an abstract unifying formalism that captures semantics of various non-monotonic logics. One intriguing problem that has received significant attention is the consistency problem: under which conditions are justifications for a fact and justifications for its negation suitably related. Two variants of justification theory exist: one in which justifications are trees and one in which they are graphs. In this work we resolve the consistency problem once and for all for the tree-like setting by showing that all reasonable tree-like justification systems are consistent.
Abstract:Justification theory is a general framework for the definition of semantics of rule-based languages that has a high explanatory potential. Nested justification systems, first introduced by Denecker et al. (2015), allow for the composition of justification systems. This notion of nesting thus enables the modular definition of semantics of rule-based languages, and increases the representational capacities of justification theory. As we show in this paper, the original semantics for nested justification systems lead to the loss of information relevant for explanations. In view of this problem, we provide an alternative characterization of semantics of nested justification systems and show that this characterization is equivalent to the original semantics. Furthermore, we show how nested justification systems allow representing fixpoint definitions (Hou and Denecker 2009).
Abstract:Symmetry and dominance breaking can be crucial for solving hard combinatorial search and optimisation problems, but the correctness of these techniques sometimes relies on subtle arguments. For this reason, it is desirable to produce efficient, machine-verifiable certificates that solutions have been computed correctly. Building on the cutting planes proof system, we develop a certification method for optimisation problems in which symmetry and dominance breaking are easily expressible. Our experimental evaluation demonstrates that we can efficiently verify fully general symmetry breaking in Boolean satisfiability (SAT) solving, thus providing, for the first time, a unified method to certify a range of advanced SAT techniques that also includes XOR and cardinality reasoning. In addition, we apply our method to maximum clique solving and constraint programming as a proof of concept that the approach applies to a wider range of combinatorial problems.