Abstract:Due to the wide employment of automated reasoning in the analysis and construction of correct systems, the results reported by automated reasoning engines must be trustworthy. For Boolean satisfiability (SAT) solvers - and more recently SAT-based maximum satisfiability (MaxSAT) solvers - trustworthiness is obtained by integrating proof logging into solvers, making solvers capable of emitting machine-verifiable proofs to certify correctness of the reasoning steps performed. In this work, we enable for the first time proof logging based on the VeriPB proof format for multi-objective MaxSAT (MO-MaxSAT) optimization techniques. Although VeriPB does not offer direct support for multi-objective problems, we detail how preorders in VeriPB can be used to provide certificates for MO-MaxSAT algorithms computing a representative solution for each element in the non-dominated set of the search space under Pareto-optimality, without extending the VeriPB format or the proof checker. By implementing VeriPB proof logging into a state-of-the-art multi-objective MaxSAT solver, we show empirically that proof logging can be made scalable for MO-MaxSAT with reasonable overhead.
Abstract:This paper presents Global Benchmark Database (GBD), a comprehensive suite of tools for provisioning and sustainably maintaining benchmark instances and their metadata. The availability of benchmark metadata is essential for many tasks in empirical research, e.g., for the data-driven compilation of benchmarks, the domain-specific analysis of runtime experiments, or the instance-specific selection of solvers. In this paper, we introduce the data model of GBD as well as its interfaces and provide examples of how to interact with them. We also demonstrate the integration of custom data sources and explain how to extend GBD with additional problem domains, instance formats and feature extractors.