Abstract:Sketch animation, which brings static sketches to life by generating dynamic video sequences, has found widespread applications in GIF design, cartoon production, and daily entertainment. While current sketch animation methods perform well in single-object sketch animation, they struggle in multi-object scenarios. By analyzing their failures, we summarize two challenges of transitioning from single-object to multi-object sketch animation: object-aware motion modeling and complex motion optimization. For multi-object sketch animation, we propose MoSketch based on iterative optimization through Score Distillation Sampling (SDS), without any other data for training. We propose four modules: LLM-based scene decomposition, LLM-based motion planning, motion refinement network and compositional SDS, to tackle the two challenges in a divide-and-conquer strategy. Extensive qualitative and quantitative experiments demonstrate the superiority of our method over existing sketch animation approaches. MoSketch takes a pioneering step towards multi-object sketch animation, opening new avenues for future research and applications. The code will be released.
Abstract:Hallucinations in multimodal large language models (MLLMs) hinder their practical applications. To address this, we propose a Magnifier Prompt (MagPrompt), a simple yet effective method to tackle hallucinations in MLLMs via extremely simple instructions. MagPrompt is based on the following two key principles, which guide the design of various effective prompts, demonstrating robustness: (1) MLLMs should focus more on the image. (2) When there are conflicts between the image and the model's inner knowledge, MLLMs should prioritize the image. MagPrompt is training-free and can be applied to open-source and closed-source models, such as GPT-4o and Gemini-pro. It performs well across many datasets and its effectiveness is comparable or even better than more complex methods like VCD. Furthermore, our prompt design principles and experimental analyses provide valuable insights into multimodal hallucination.