Abstract:Egocentric temporal action segmentation in videos is a crucial task in computer vision with applications in various fields such as mixed reality, human behavior analysis, and robotics. Although recent research has utilized advanced visual-language frameworks, transformers remain the backbone of action segmentation models. Therefore, it is necessary to improve transformers to enhance the robustness of action segmentation models. In this work, we propose two novel ideas to enhance the state-of-the-art transformer for action segmentation. First, we introduce a dual dilated attention mechanism to adaptively capture hierarchical representations in both local-to-global and global-to-local contexts. Second, we incorporate cross-connections between the encoder and decoder blocks to prevent the loss of local context by the decoder. We also utilize state-of-the-art visual-language representation learning techniques to extract richer and more compact features for our transformer. Our proposed approach outperforms other state-of-the-art methods on the Georgia Tech Egocentric Activities (GTEA) and HOI4D Office Tools datasets, and we validate our introduced components with ablation studies. The source code and supplementary materials are publicly available on https://www.sail-nu.com/dxformer.
Abstract:Cross view action recognition (CVAR) seeks to recognize a human action when observed from a previously unseen viewpoint. This is a challenging problem since the appearance of an action changes significantly with the viewpoint. Applications of CVAR include surveillance and monitoring of assisted living facilities where is not practical or feasible to collect large amounts of training data when adding a new camera. We present a simple yet efficient CVAR framework to learn invariant features from either RGB videos, 3D skeleton data, or both. The proposed approach outperforms the current state-of-the-art achieving similar levels of performance across input modalities: 99.4% (RGB) and 99.9% (3D skeletons), 99.4% (RGB) and 99.9% (3D Skeletons), 97.3% (RGB), and 99.2% (3D skeletons), and 84.4%(RGB) for the N-UCLA, NTU-RGB+D 60, NTU-RGB+D 120, and UWA3DII datasets, respectively.