Abstract:Low-light image enhancement remains an open problem, and the new wave of artificial intelligence is at the center of this problem. This work describes the use of genetic algorithms for optimizing analytical models that can improve the visualization of images with poor light. Genetic algorithms are part of metaheuristic approaches, which proved helpful in solving challenging optimization tasks. We propose two analytical methods combined with optimization reasoning to approach a solution to the physical and computational aspects of transforming dark images into visible ones. The experiments demonstrate that the proposed approach ranks at the top among 26 state-of-the-art algorithms in the LOL benchmark. The results show evidence that a simple genetic algorithm combined with analytical reasoning can defeat the current mainstream in a challenging computer vision task through controlled experiments and objective comparisons. This work opens interesting new research avenues for the swarm and evolutionary computation community and others interested in analytical and heuristic reasoning.
Abstract:The primary purpose of this paper is to present the concept of dichotomy in image illumination modeling based on the power function. In particular, we review several mathematical properties of the power function to identify the limitations and propose a new mathematical model capable of abstracting illumination dichotomy. The simplicity of the equation opens new avenues for classical and modern image analysis and processing. The article provides practical and illustrative image examples to explain how the new model manages dichotomy in image perception. The article shows dichotomy image space as a viable way to extract rich information from images despite poor contrast linked to tone, lightness, and color perception. Moreover, a comparison with state-of-the-art methods in image enhancement provides evidence of the method's value.
Abstract:Machine learning is at the center of mainstream technology and outperforms classical approaches to handcrafted feature design. Aside from its learning process for artificial feature extraction, it has an end-to-end paradigm from input to output, reaching outstandingly accurate results. However, security concerns about its robustness to malicious and imperceptible perturbations have drawn attention since its prediction can be changed entirely. Salient object detection is a research area where deep convolutional neural networks have proven effective but whose trustworthiness represents a significant issue requiring analysis and solutions to hackers' attacks. Brain programming is a kind of symbolic learning in the vein of good old-fashioned artificial intelligence. This work provides evidence that symbolic learning robustness is crucial in designing reliable visual attention systems since it can withstand even the most intense perturbations. We test this evolutionary computation methodology against several adversarial attacks and noise perturbations using standard databases and a real-world problem of a shorebird called the Snowy Plover portraying a visual attention task. We compare our methodology with five different deep learning approaches, proving that they do not match the symbolic paradigm regarding robustness. All neural networks suffer significant performance losses, while brain programming stands its ground and remains unaffected. Also, by studying the Snowy Plover, we remark on the importance of security in surveillance activities regarding wildlife protection and conservation.
Abstract:Art Media Classification problem is a current research area that has attracted attention due to the complex extraction and analysis of features of high-value art pieces. The perception of the attributes can not be subjective, as humans sometimes follow a biased interpretation of artworks while ensuring automated observation's trustworthiness. Machine Learning has outperformed many areas through its learning process of artificial feature extraction from images instead of designing handcrafted feature detectors. However, a major concern related to its reliability has brought attention because, with small perturbations made intentionally in the input image (adversarial attack), its prediction can be completely changed. In this manner, we foresee two ways of approaching the situation: (1) solve the problem of adversarial attacks in current neural networks methodologies, or (2) propose a different approach that can challenge deep learning without the effects of adversarial attacks. The first one has not been solved yet, and adversarial attacks have become even more complex to defend. Therefore, this work presents a Deep Genetic Programming method, called Brain Programming, that competes with deep learning and studies the transferability of adversarial attacks using two artworks databases made by art experts. The results show that the Brain Programming method preserves its performance in comparison with AlexNet, making it robust to these perturbations and competing to the performance of Deep Learning.