Abstract:Low-light image enhancement remains an open problem, and the new wave of artificial intelligence is at the center of this problem. This work describes the use of genetic algorithms for optimizing analytical models that can improve the visualization of images with poor light. Genetic algorithms are part of metaheuristic approaches, which proved helpful in solving challenging optimization tasks. We propose two analytical methods combined with optimization reasoning to approach a solution to the physical and computational aspects of transforming dark images into visible ones. The experiments demonstrate that the proposed approach ranks at the top among 26 state-of-the-art algorithms in the LOL benchmark. The results show evidence that a simple genetic algorithm combined with analytical reasoning can defeat the current mainstream in a challenging computer vision task through controlled experiments and objective comparisons. This work opens interesting new research avenues for the swarm and evolutionary computation community and others interested in analytical and heuristic reasoning.
Abstract:The primary purpose of this paper is to present the concept of dichotomy in image illumination modeling based on the power function. In particular, we review several mathematical properties of the power function to identify the limitations and propose a new mathematical model capable of abstracting illumination dichotomy. The simplicity of the equation opens new avenues for classical and modern image analysis and processing. The article provides practical and illustrative image examples to explain how the new model manages dichotomy in image perception. The article shows dichotomy image space as a viable way to extract rich information from images despite poor contrast linked to tone, lightness, and color perception. Moreover, a comparison with state-of-the-art methods in image enhancement provides evidence of the method's value.