Abstract:Machine learning is at the center of mainstream technology and outperforms classical approaches to handcrafted feature design. Aside from its learning process for artificial feature extraction, it has an end-to-end paradigm from input to output, reaching outstandingly accurate results. However, security concerns about its robustness to malicious and imperceptible perturbations have drawn attention since its prediction can be changed entirely. Salient object detection is a research area where deep convolutional neural networks have proven effective but whose trustworthiness represents a significant issue requiring analysis and solutions to hackers' attacks. Brain programming is a kind of symbolic learning in the vein of good old-fashioned artificial intelligence. This work provides evidence that symbolic learning robustness is crucial in designing reliable visual attention systems since it can withstand even the most intense perturbations. We test this evolutionary computation methodology against several adversarial attacks and noise perturbations using standard databases and a real-world problem of a shorebird called the Snowy Plover portraying a visual attention task. We compare our methodology with five different deep learning approaches, proving that they do not match the symbolic paradigm regarding robustness. All neural networks suffer significant performance losses, while brain programming stands its ground and remains unaffected. Also, by studying the Snowy Plover, we remark on the importance of security in surveillance activities regarding wildlife protection and conservation.
Abstract:Despite recent improvements in computer vision, artificial visual systems' design is still daunting since an explanation of visual computing algorithms remains elusive. Salient object detection is one problem that is still open due to the difficulty of understanding the brain's inner workings. Progress on this research area follows the traditional path of hand-made designs using neuroscience knowledge. In recent years two different approaches based on genetic programming appear to enhance their technique. One follows the idea of combining previous hand-made methods through genetic programming and fuzzy logic. The other approach consists of improving the inner computational structures of basic hand-made models through artificial evolution. This research work proposes expanding the artificial dorsal stream using a recent proposal to solve salient object detection problems. This approach uses the benefits of the two main aspects of this research area: fixation prediction and detection of salient objects. We decided to apply the fusion of visual saliency and image segmentation algorithms as a template. The proposed methodology discovers several critical structures in the template through artificial evolution. We present results on a benchmark designed by experts with outstanding results in comparison with the state-of-the-art.