Abstract:We describe a novel dataset for the automated recognition of named taxonomic and other entities relevant to the association of viruses with their hosts. We further describe some initial results using pre-trained models on the named-entity recognition (NER) task on this novel dataset. We propose that our dataset of manually annotated abstracts now offers a Gold Standard Corpus for training future NER models in the automated extraction of host-pathogen detection methods from scientific publications, and further explain how our work makes first steps towards predicting the important human health-related concept of viral spillover risk automatically from the scientific literature.
Abstract:We briefly introduce herein a new form of distributed, multi-agent artificial intelligence, which we refer to as "tentacular." Tentacular AI is distinguished by six attributes, which among other things entail a capacity for reasoning and planning based in highly expressive calculi (logics), and which enlists subsidiary agents across distances circumscribed only by the reach of one or more given networks.